精英家教网 > 高中数学 > 题目详情
已知圆锥的底面直径AB=2a,母线SA=3a,在母线SB上任取一点C,当C在什么位置时,圆锥侧面上从A到C的距离最短;并求出这个距离.
考点:多面体和旋转体表面上的最短距离问题
专题:计算题,空间位置关系与距离
分析:利用侧面展开图,求出∠ASB,即可得出结论.
解答: 解:如图所示,设∠ASB=α,则
πa=α•3a,∴α=
π
3

∴AC=3a•sin
π
3
=
3
3
2
a

SC=
3a
2

∴C在距离S点
3a
2
处,最短距离为
3
3
2
a
点评:本题考查多面体和旋转体表面上的最短距离问题,考查学生的计算能力,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

sin(2014π)=(  )
A、-1
B、1
C、
3
2
D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-
1
3
ex3+
1
2
x2+
2
e
x,g(x)=f(x)-
2
e
x+ex(x-1),函数g(x)的导函数为g′(x),其中e=2.71828…为自然对数的底数.
(Ⅰ)求f(x)的极值;
(Ⅱ)求g(x)的单调区间;
(Ⅲ)当x>0时,求证:g′(x)≥1+lnx.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x(ex-1)-ax2(e=2071828…是自然对数的底数).
(I)若a=
1
2
,求f(x)的单调区间;
(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围;
(Ⅲ)设n∈N*,x>0,求证:ex>1+
x
1!
+
x2
2!
+…+
xn
n!
n!=n×(n-1)×…×2×1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+mx2-m2x+1(m为常数,且m>0),当x=-2时有极大值.
(1)求m的值;
(2)若曲线y=f(x)有斜率为-5的切线,求此切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线y=x2-6x+1与坐标轴的交点均在⊙C上,
(1)求⊙C的方程;
(2)若⊙C与直线x-y+a=0交于A、B两点且OA⊥OB,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数f(x)=ax2+bx+c(a>0),方程f(x)-x=0的两个根x1,x2满足0<x1<x2
1
a

(1)a=
1
2
,b=0,c=
3
8
,求x12+x22的值
(2)设函数f(x)的图象关于直线x=x0对称,证明:x0
x1
2

(3)当x∈(0,x1)时,证明x<f(x)<x1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=loga(1-x),h(x)=loga(x+3)(0<a<1).
(1)设f(x)=g(x)+h(x),若函数f(x)的最小值是-2,求a的值;
(2)设F(x)=g(x)-h(x),用定义证明函数F(x)在定义域上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据.
单位x(元)88.28.48.68.89
销量y(件)908483807568
(1)若y与x的线性关系为:
y
=-20x+a,求a.
(2)预计在今后的销售中,销量y与单价仍然服从(1)中的有关系,且该产品的成本为4元/件,为了使工厂获得最大利润,该产品的单价应定为多少元?

查看答案和解析>>

同步练习册答案