精英家教网 > 高中数学 > 题目详情
18.已知F1,F2分别是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点,点A是椭圆的右顶点,O为坐标原点,若椭圆上的一点M满足MF1⊥MF2,|MA|=|MO|,则椭圆的离心率为$\frac{2\sqrt{7}}{7}$.

分析 过M作MN⊥x轴,交x轴于N,不妨设M在第一象限,从而得到M($\frac{a}{2},\frac{\sqrt{3}}{2}b$),由MF1⊥MF2,利用$\overrightarrow{M{F}_{1}}•\overrightarrow{M{F}_{2}}=0$即可求出椭圆的离心率.

解答 解:如图,椭圆上的一点M满足MF1⊥MF2,|MA|=|MO|,
不妨设M在第一象限,过M作MN⊥x轴,交x轴于N,
∴N是OA的中点,则M点横坐标为$\frac{a}{2}$,M点纵坐标为$\frac{\sqrt{3}}{2}b$,
即M($\frac{a}{2},\frac{\sqrt{3}}{2}b$),又F1(-c,0),F2(c,0),
∴$\overrightarrow{M{F}_{1}}•\overrightarrow{M{F}_{2}}=(\frac{a}{2}+c,\frac{\sqrt{3}}{2}b)•(\frac{a}{2}-c,\frac{\sqrt{3}}{2}b)$=$\frac{{a}^{2}}{4}-{c}^{2}+\frac{3}{4}{b}^{2}=0$,
∴4c2=a2+3b2=a2+3a2-3c2,即4a2=7c2,得2a=$\sqrt{7}$c,
∴椭圆的离心率e=$\frac{c}{a}$=$\frac{2\sqrt{7}}{7}$.
故答案为:$\frac{2\sqrt{7}}{7}$.

点评 本题考查椭圆的离心率的求法,考查平面向量在求解圆锥曲线问题中的应用,合理运用MF1⊥MF2,|MA|=|MO|是关键,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是(  )
A.使用了归纳推理B.使用了类比推理
C.使用了“三段论”,但大前提错误D.使用了“三段论”,但小前提错误

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\sqrt{3}$sinωx+cosωx+c(ω>0,x∈R,c是实数常数)的图象上的一个最高点($\frac{π}{6}$,1),与该最高点最近的一个最低点是($\frac{2π}{3}$,-3)
(1)求函数f(x)的解析式
(2)在△ABC中,角A、B、C所对的边分别为a,b,c,且b2=a2+c2+accosB,角A的取值范围是区间M,当x∈M时,试求函数f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设函数f(x)=2ax2+(a-1)x+3是偶函数,则f(x)=ax+a-1是奇函数(填奇偶性).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.不等式|$\frac{x+2}{x}$|<1的解集为{x|x<-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.“a>2”是“a(a-2)>0”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.铁路货运调度站有A、B两个信号灯,在灯旁停靠着甲、乙、丙三列火车,它们的车长正好构成一个等差数列,其中乙车的车长居中.最开始的时候,甲、丙两车车尾对齐,且车尾正好位于A信号灯处,而车头则冲着B信号灯的方向,乙车的车尾则位于B信号灯处,车头则冲着A的方向.现在,三列火车同时出发向前行驶,10秒之后三列火车的车头恰好相遇.再过15秒,甲车恰好完全超过丙车,而丙车也正好完全和乙车错开,请问:甲、乙两车从车头相遇直至完全错开一共用了几秒钟.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知1-x+x2-x3+…+(-1)nxn=a0+a1(x+1)+a2(x+1)2+…+an(x+1)n,且n为不小于2的自然数,则a2=C${\;}_{n+1}^{3}$.(用n表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=lnx-ax在x=2处的切线l与直线2x-y-3=0垂直.
(1)求实数a的值;
(2)若关于x的方程f(x)+m=2x-x2在[$\frac{1}{2}$,2]上恰有两个不相等的实数根,求实数m的取值范围.

查看答案和解析>>

同步练习册答案