精英家教网 > 高中数学 > 题目详情
6.设函数f(x)=2ax2+(a-1)x+3是偶函数,则f(x)=ax+a-1是奇函数(填奇偶性).

分析 由奇偶函数的定义,即可得到答案.

解答 解:∵函数f(x)=2ax2+(a-1)x+3是偶函数
∴f(-x)=f(x)
∴a=1
∴f(x)=ax+a-1=x
∵f(-x)=-f(x)
∴f(x)是奇函数.

点评 本题考查奇偶函数的定义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=sin(ωx+φ)-cos(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$),其图象相邻的两条对称轴方程为x=0与x=$\frac{π}{2}$,则(  )
A.f(x)的最小正周期为2π,且在(0,π)上为单调递增函数
B.f(x)的最小正周期为2π,且在(0,π)上为单调递减函数
C.f(x)的最小正周期为π,且在(0,$\frac{π}{2}$)上为单调递增函数
D.f(x)的最小正周期为π,且在(0,$\frac{π}{2}$)上为单调递减函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知x>1,y<0,且3y(1-x)=x+8,则x-3y的最小值是(  )
A.8B.6C.$\frac{15}{2}$D.$\frac{13}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知命题“(¬p)∨(¬q)”是假命题,给出下列四个结论:
①命题“p∧q”是真命题;       ②命题“p∧q”是假命题;
③命题“p∨q”是假命题;       ④命题“p∨q”是真命题.
其中正确的结论为(  )
A.①③B.②③C.①④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.△ABC的内角A,B,C所对的边分别为a,b,c.且$\overrightarrow m$=(cos(A-B),-sin(A-B)),$\overrightarrow n$=(cosB,sinB),若$\overrightarrow m$•$\overrightarrow n$=-$\frac{3}{5}$.
(Ⅰ)求sin A的值;
(Ⅱ)若a=4$\sqrt{2}$,b=5,求向量$\overrightarrow{BA}$在$\overrightarrow{BC}$方向上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=3x+λ•3-x(λ∈R)
(1)当λ=-2时,求函数f(x)的零点;
(2)若函数f(x)为奇函数,求实数λ的值;
(3)若不等式$\frac{1}{2}$≤f(x)≤4在x∈[0,1]上恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知F1,F2分别是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点,点A是椭圆的右顶点,O为坐标原点,若椭圆上的一点M满足MF1⊥MF2,|MA|=|MO|,则椭圆的离心率为$\frac{2\sqrt{7}}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设命题p:关于x的函数y=(a-1)x为增函数;命题q:不等式-x2+2x-2≤a对一切实数均成立.若命题“p或q”为真命题,且“p且q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x2-kx+(2k-3).
(1)若k=$\frac{3}{2}$时,解不等式f(x)>0;
(2)若f(x)>0对任意x∈R恒成立,求实数k的取值范围;
(3)若函数f(x)两个不同的零点均大于$\frac{5}{2}$,求实数k的取值范围.

查看答案和解析>>

同步练习册答案