精英家教网 > 高中数学 > 题目详情
4.双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线经过圆(x-2)2+(y+1)2=5的圆心,焦点到渐近线的距离为2,则双曲线C的标准方程是(  )
A.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{4}$-y2=1C.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{16}$=1D.x2-$\frac{{y}^{2}}{4}$=1

分析 求出圆的圆心坐标,双曲线的渐近线方程,利用焦点到渐近线的距离,列出关系式,求解双曲线的几何量,得到双曲线方程.

解答 解:圆(x-2)2+(y+1)2=5的圆心(2,-1),双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线经过圆(x-2)2+(y+1)2=5的圆心,可得:a=2b;焦点到渐近线的距离为2,可得$\frac{bc}{\sqrt{{a}^{2}+{b}^{2}}}=2$,即b=2,则a=4,
双曲线C的标准方程是:$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{4}$=1.
故选:A.

点评 本题考查双曲线的简单性质与圆的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.函数f(x)=mx3+x2+n,g(x)=alnx.
(1)若f(x)在点(1,f(1))处的切线方程为x+y-1=0,求f(x)的表达式;
(2)若对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求实数a的取值范围;
(3)在(1)的条件下,设F(x)=$\left\{\begin{array}{l}f(x),x<1\\ g(x),x≥1\end{array}$,对任意给定的正实数a,曲线y=F(x)上是否存在两点P,Q,使得△POQ是以O(O为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在y轴上?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知直线l1:x-2y+3=0与直线l2:2x+3y-8=0的交点为M,
(1)求过点M且到点P(0,4)的距离为2的直线l的方程;
(2)求过点M且与直线l3:x+3y+1=0平行的直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.“sin(α+β)=sinα+sinβ”是“α=0,β=0”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.分别求下列函数的导函数及在x=1处的导数.
(1)y=$\frac{4}{{x}^{2}}$;
(2)y=$\frac{1}{x}$-$\sqrt{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设i是虚数单位,复数$z=\frac{{2{i^3}}}{1-i}$,则复数z在复平面内所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=$\sqrt{1-ax}$在区间[-1,+∞)有意义,则实数a的取值范围是[-1,0].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若sinx=-$\frac{{\sqrt{2}}}{2}$,则cos2x=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.一个正方体的棱长为2,则该正方体的内切球的体积为$\frac{4π}{3}$.

查看答案和解析>>

同步练习册答案