精英家教网 > 高中数学 > 题目详情
9.设i是虚数单位,复数$z=\frac{{2{i^3}}}{1-i}$,则复数z在复平面内所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用复数代数形式的乘除运算化简求得Z所对应点的坐标得答案.

解答 解:∵$z=\frac{{2{i^3}}}{1-i}$=$\frac{-2i}{(1-i)}=\frac{-2i(1+i)}{(1-i)(1+i)}=\frac{2-2i}{2}=1-i$,
∴复数z在复平面内所对应的点的坐标为(1,-1),位于第四象限.
故选:D.

点评 本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{x}{1+x}$.
(1)求f(2)与f($\frac{1}{2}$),f(3)与f($\frac{1}{3}$)的值;
(2)由(1)中求得的结果,你能发现f(x)与f($\frac{1}{x}$)有什么关系?并证明你的发现.
(3)求f(1)+f(2)+f(3)+…+f(2015)+f($\frac{1}{2}$)+f($\frac{1}{3}$)+…+f($\frac{1}{2015}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若函数y=f(x)的定义域是[0,2016],则函数g(x)=$\frac{f(x+1)}{x-1}$的定义域是[-1,1)∪(1,2015].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图在三棱柱ABC-A1B1C1中,已知AB⊥侧面BB1C1C,BC=BC1=$\sqrt{2}$,AB=CC1=2,点E在棱BB1上.
(Ⅰ)证明C1B⊥平面ABC;
(Ⅱ)试确定点E位置,使得二面角A-C1E-C  的余弦值为$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线经过圆(x-2)2+(y+1)2=5的圆心,焦点到渐近线的距离为2,则双曲线C的标准方程是(  )
A.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{4}$-y2=1C.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{16}$=1D.x2-$\frac{{y}^{2}}{4}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=ax2+(2a-1)x-3(a≠0)在区间[-$\frac{3}{2}$,2]上的最大值为1,则a=$\frac{3}{4}$或a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=$\left\{\begin{array}{l}{x^2},x>0\\-{x^2},x<0\end{array}$则f(x)是(  )
A.奇函数B.偶函数
C.既是奇函数又是偶函数D.非奇非偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.△ABC中,角A,B,C的对边分别为a,b,c,已知c=12,b=4$\sqrt{6}$,O为△ABC的外接圆的圆心.
①若cosA=$\frac{4}{5}$,求△ABC的面积S;
②若D为BC边上任意一点,$\overrightarrow{DO}-\overrightarrow{DA}=\frac{1}{2}\overrightarrow{AB}+\frac{1}{4}\overrightarrow{AC}$,求sinB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知过点P(m,0)的直线l的参数方程是$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t+m}\\{y=\frac{1}{2}t}\end{array}\right.$(t为参数).以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程式为ρ=2cosθ.
(Ⅰ)求直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ)若直线l与曲线C交于两点A,B,且|PA|•|PB|=1,求实数m的值.

查看答案和解析>>

同步练习册答案