| A. | $\frac{1}{64}$ | B. | -$\frac{1}{64}$ | C. | $\frac{1}{32}$ | D. | -$\frac{1}{32}$ |
分析 根据等比数列的性质和$\frac{{{S_{10}}}}{S_5}$=$\frac{31}{32}$可以求得q5,然后由等比数列的通项公式得到a6的值.
解答 解:设等比数列{an}的公比为q,则
由$\frac{{{S_{10}}}}{S_5}$=$\frac{31}{32}$得到:q5=$\frac{{S}_{10}-{S}_{5}}{{S}^{5}}$=$\frac{{{S_{10}}}}{S_5}$-1=$\frac{31}{32}$-1=-$\frac{1}{32}$,
所以a6=a1q5=$\frac{1}{2}$×(-$\frac{1}{32}$)=-$\frac{1}{64}$.
故选:B.
点评 本题考查了等比数列的通项公式和前n项和公式,是基础的计算题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | A≥B | B. | A>B | C. | A<B | D. | A≤B |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | π2-1 | B. | π2+1 | C. | -π | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7}{3}$ | B. | $\frac{11}{3}$ | C. | $\frac{7}{2}$ | D. | $\frac{9}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7}{5}$ | B. | -$\frac{7}{5}$ | C. | $±\frac{7}{5}$ | D. | -$\frac{1}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com