| A. | -2 | B. | 3 | C. | 4 | D. | 6 |
分析 以AC为x轴,AC的中垂线为y轴建立平面直角坐标系,根据$\overrightarrow{AC}$+2$\overrightarrow{DC}$=3$\overrightarrow{BC}$,求出D点坐标,运用向量的数量积的坐标表示,计算$\overrightarrow{CD}$$•\overrightarrow{CA}$.
解答
解:以AC为x轴,AC的中垂线为y轴建立平面直角坐标系,
则A(-2,0),C(2,0),
由勾股定理可得|OB|=$\sqrt{9-4}$=$\sqrt{5}$,
即有B(0,$\sqrt{5}$),
设D(x,y),
则$\overrightarrow{AC}$=(4,0),$\overrightarrow{BC}$=(2,-$\sqrt{5}$),$\overrightarrow{DC}$=(2-x,-y).
由$\overrightarrow{AC}$+2$\overrightarrow{DC}$=3$\overrightarrow{BC}$,可得$\left\{\begin{array}{l}{4+2(2-x)=6}\\{-2y=-3\sqrt{5}}\end{array}\right.$,
解得x=1,y=$\frac{3\sqrt{5}}{2}$.即D(1,$\frac{3\sqrt{5}}{2}$).
则$\overrightarrow{CD}$=(-1,$\frac{3\sqrt{5}}{2}$),$\overrightarrow{CA}$=(-4,0).
则$\overrightarrow{CD}$•$\overrightarrow{CA}$=(-1)×(-4)+0=4.
故选:C.
点评 本题考查了平面向量的数量积运算,建立坐标系转化为坐标运算是解题关键,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | -4 | B. | 4 | C. | -1 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=$\sqrt{(x-1)^{2}}$,g(x)=x-1 | B. | f(x)=$\sqrt{{x}^{2}-1}$,g(x)=$\sqrt{x+1}$$•\sqrt{x-1}$ | ||
| C. | f(x)=($\sqrt{x-1}$)2,g(x)=$\sqrt{(x-1)^{2}}$ | D. | f(x)=x,g(x)=$\root{3}{{x}^{3}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com