精英家教网 > 高中数学 > 题目详情
8.设定义域为R的函数$f(x)=\left\{{\begin{array}{l}{\frac{4}{{|{x-1}|}}(x≠1)}\\{2(x=1)}\end{array}}\right.$,若关于x的方程f2(x)+bf(x)+c=0有三个不同的实数解x1,x2,x3,则${x_1}^2+{x_2}^2+{x_3}^2$=11.

分析 令f(x)=t,借助函数图象判断方程f(x)=t的解的情况,从而得出关于t的方程t2+bt+c=0在(0,+∞)上根的分布情况,进而求出x1,x2,x3

解答 解:作出y=f(x)的函数图象如图所示:

令f(x)=t,
由图象可知当且仅当t=2时,方程f(x)=t有3解;
当0<t<2或t>2时,方程f(x)=t有两解;
当t≤0时,方程f(x)=t无解.
∵关于x的方程f2(x)+bf(x)+c=0有三个不同的实数解,
∴关于t的方程t2+bt+c=0在(0,+∞)上只有一解t=2.
令f(x)=2得x1=-1,x2=1,x3=3.
∴${x_1}^2+{x_2}^2+{x_3}^2$=(-1)2+12+32=11.
故答案为:11.

点评 本题考查了函数零点与函数图象的关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司的底薪70元,每单抽成4元;乙公司无底薪,40单以内(含40单)的部分每单抽成5元,超出40单的部分每单抽成7元,假设同一公司送餐员一天的送餐单数相同,现从两家公司各随机抽取一名送餐员,并分别记录其100天的送餐单数,得到如表频数表:
甲公司送餐员送餐单数频数表
 送餐单数 38 39 40 41 42
 天数 20 40 20 10 10
乙公司送餐员送餐单数频数表
 送餐单数 38 39 40 41 42
 天数 10 20 20 40 10
(Ⅰ)现从甲公司记录的100天中随机抽取两天,求这两天送餐单数都大于40的概率;
(Ⅱ)若将频率视为概率,回答下列问题:
(i)记乙公司送餐员日工资为X(单位:元),求X的分布列和数学期望;
(ii)小明拟到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,请利用所学的统计学知识为他作出选择,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=x+xlnx,若m∈Z,且(m-2)(x-2)<f(x)对任意的x>2恒成立,则m的最大值为(  )
A.4B.5C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,设长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,Q是AA1的中点,点P在线段B1D1上;
(1)试在线段B1D1上确定点P的位置,使得异面直线QB与DP所成角为60°,并请说明
你的理由;
(2)在满足(1)的条件下,求四棱锥Q-DBB1P的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设数列$\sqrt{2}$,$\sqrt{5}$,2$\sqrt{2}$,$\sqrt{11}$,…,则$\sqrt{41}$是这个数列的第14项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某食品公司研发生产一种新的零售食品,从产品中抽取100件作为样本,测量这些产品的一项质量指标值,由测量结果得到如图频率分布直方图.
(Ⅰ)求直方图中a的值;
(Ⅱ)由频率分布直方图可以认为,这种产品的质量指标值Z服从正态分布N(200,12.22),试计算数据落在(187.8,212.2)上的频率;
参考数据
若Z~N(μ,δ2),则P(μ-δ<Z<μ+δ)=0.6826,P(μ-2δ<Z<μ+2δ)=0.9544.
(Ⅲ)设生产成本为y,质量指标为x,生产成本与质量指标之间满足函数关系y=$\left\{\begin{array}{l}{0.4x,x≤205}\\{0.8x-80,x>205}\end{array}\right.$,假设同组中的每个数据用该组区间的右端点值代替,试计算生产该食品的平均成本.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=2,存在单位向量$\overrightarrow{e}$,使得($\overrightarrow{a}$-$\overrightarrow{e}$)•($\overrightarrow{b}$-$\overrightarrow{e}$)=0,则|$\overrightarrow{a}$-$\overrightarrow{b}$|的取值范围是[$\sqrt{7}$-1,$\sqrt{7}$+1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)是定义在R上的偶函数,且在(0,+∞)上单调递增,若对于任意x∈R,$f({{{log}_2}a})≤f({{x^2}-2x+2})$恒成立,则a的取值范围是(  )
A.(0,1]B.$[{\frac{1}{2},2}]$C.(0,2]D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知数列{an}满足an+1-an=2,a1=-5,则|a1|+|a2|+…+|a6|=(  )
A.9B.15C.18D.30

查看答案和解析>>

同步练习册答案