精英家教网 > 高中数学 > 题目详情
10.已知数列{an}的前n项和Sn=n2+n+1,则:a1+a4=(  )
A.10B.11C.12D.13

分析 由数列的前n项和求得首项,再由a4=S4-S3求得a4,则答案可求.

解答 解:由Sn=n2+n+1,得a1=S1=3,
${a}_{4}={S}_{4}-{S}_{3}={4}^{2}+4+1-({3}^{2}+3+1)=8$,
∴a1+a4=11.
故选:B.

点评 本题考查数列递推式,训练了利用数列的前n项和求数列中的项,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.(x2+x+1)(1-x)4展开式中x2的系数为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=2x+1,数列{an},{bn}分别满足an=f(n),bn=f(bn-1).且b1=1,
(1)分别求{an},{bn}的通项公式;
(2)记cn=($\frac{{a}_{n}}{{b}_{n}+1}$),求数列{cn}的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}满足a1=3,当n>1时,有an+n=2an-1+2.
(1)证明:数列{an-n}是等比数列,并求数列{an}的通项公式及其前n项和Sn
(2)若数列{bn}满足${b_n}={(-1)^n}•{a_n}$,试求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数$y=2sin(2x+φ)(|φ|<\frac{π}{2})$的图象经过点(0,-1),则该函数的一个单调递增区间为(  )
A.[-$\frac{π}{6}$,$\frac{π}{3}$]B.[$\frac{π}{3}$,$\frac{5π}{6}$]C.[-$\frac{5π}{12}$,$\frac{π}{12}$]D.[$\frac{π}{12}$,$\frac{7π}{12}$]]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.i是虚数单位,计算$\frac{1-i}{2+i}$的结果为$\frac{1}{5}-\frac{3}{5}i$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0),且函数f(x)的部分图象如图所示,则有(  )
A.f(-$\frac{3π}{4}$)<f($\frac{5π}{3}$)<f($\frac{7π}{6}$)B.f(-$\frac{3π}{4}$)<f($\frac{7π}{6}$)<f($\frac{5π}{3}$)C.f($\frac{5π}{3}$)<f($\frac{7π}{6}$)<f(-$\frac{3π}{4}$)D.f($\frac{5π}{3}$)<f(-$\frac{3π}{4}$)<f($\frac{7π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知奇函数f(x)当x>0时的解析式为f(x)=$\frac{1}{{x}^{2}+1}$,则f(-1)=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设{an}为等差数列,Sn表示它的前n项和,已知对任何正整数n均有Sn=$\frac{{{a}_{n}}^{2}}{6}$+$\frac{3}{2}$n,求:
(1)数列{an}首项a1
(2)数列{an}的通项公式.

查看答案和解析>>

同步练习册答案