精英家教网 > 高中数学 > 题目详情
20.(x2+x+1)(1-x)4展开式中x2的系数为3.

分析 把(1-x)4 按照二项式定理展开,可得(x2+x+1)(1-x)4展开式中x2的系数.

解答 解:由于(1-x)4 =1-4x+6x2-4x3+x4
∴(x2+x+1)(1-x)4展开式中x2的系数为1-4+6=3,
故答案为:3.

点评 本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知数列{an}中a1=1,an+1=an+2n(n∈N*)求其通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设点P是曲线y=ex-$\sqrt{3}$x+$\frac{2}{3}$上的任意一点,P点处的切线的倾斜角为α,则角α的取值范围是(  )
A.[$\frac{2}{3}π,π$)B.[0,$\frac{π}{2}$)∪($\frac{2}{3}π,π$)C.[0,$\frac{π}{2}$)∪[$\frac{5π}{6}$,π)D.[$\frac{π}{2}$,$\frac{5π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知定义在R上的函数f(x)=2cosωxsin($ωx+\frac{π}{6}$)-$\frac{1}{2}$(ω>0)的周期为π.
(1)求ω的值及f(x)的单调增区间;
(2)记g(x)=f(x)+sin(x-$\frac{π}{6}$),求g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,在边长为2的正六边形ABCDEF中,则$\overrightarrow{AB}•\overrightarrow{AD}$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数f(x)=$\left\{\begin{array}{l}{{2}^{x}+a,x>2}\\{lo{g}_{\frac{1}{2}}(\frac{9}{4}-x)+{a}^{2},x≤2}\end{array}\right.$,若f(x)的值域为R,则实数a的取值范围是(  )
A.(-∞,-1]∪[2,+∞)B.[-1,2]C.(-∞,-2]∪[1,+∞)D.[-2,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若(1-2x)2016=a0+a1x+a2x2+…+a2016x2016(x∈R),则$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+$\frac{{a}_{3}}{{2}^{3}}$+…+$\frac{{a}_{2016}}{{2}^{2016}}$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=$\left\{\begin{array}{l}{x+\frac{2}{x}-2,x≥1}\\{lo{g}_{3}({x}^{2}+1),x<1}\end{array}\right.$,则$f(f(-\sqrt{2}))$=1;f(x)的最小值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知数列{an}的前n项和Sn=n2+n+1,则:a1+a4=(  )
A.10B.11C.12D.13

查看答案和解析>>

同步练习册答案