精英家教网 > 高中数学 > 题目详情

【题目】已知定义在[0,+∞)上的函数f(x)满足f(x)=2f(x+2),当x∈[0,2)时,f(x)=﹣2x2+4x.设f(x)在[2n﹣2,2n)上的最大值为an(n∈N*),且{an}的前n项和为Sn , 则Sn=(
A.
B.
C.
D.

【答案】B
【解析】解:∵定义在[0,+∞)上的函数f(x)满足f(x)=2f(x+2), ∴f(x+2)= f(x),
∴f(x+4)= f(x+2)= f(x),f(x+6)= f(x+4)= f(x),…f(x+2n)= f(x)
设x∈[2n﹣2,2n),则x﹣(2n﹣2)∈[0,2)
∵当x∈[0,2)时,f(x)=﹣2x2+4x.
∴f[x﹣(2n﹣2)]=﹣2[(x﹣(2n﹣2)]2+4[x﹣(2n﹣2)].
=﹣2(x﹣2n+1)2+2
∴f(x)=21n[﹣2(x﹣2n+1)2+2],x∈[2n﹣2,2n),
∴x=2n﹣1时,f(x)的最大值为22n
∴an=22n
∴{an}表示以2为首项, 为公比的等比数列
∴{an}的前n项和为Sn= =
故选B.
根据定义在[0,+∞)上的函数f(x)满足f(x)=2f(x+2),可得f(x+2)= f(x),从而f(x+2n)= f(x),利用当x∈[0,2)时,f(x)=﹣2x2+4x,可求(x)在[2n﹣2,2n)上的解析式,从而可得f(x)在[2n﹣2,2n)上的最大值为an , 进而利用等比数列的求和公式,即可求得{an}的前n项和为Sn

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】高二某班50名学生在一次百米测试中,成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组第二组,…,第五组如图是按上述分组方法得到的频率分布直方图

(1)请根据频率分布直方图估计该组数据的众数和中位数(精确到0.1);

(2)从成绩介于两组的人中任取2人,求两人分布来自不同组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣|x|,若 ,则实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若方程 所表示的曲线为C,给出下列四个命题:

C为椭圆,则

C为双曲线,则

曲线C不可能是圆;

,曲线C为椭圆,且焦点坐标为

,曲线C为双曲线,且虚半轴长为

其中真命题的序号为____________.(把所有正确命题的序号都填在横线上

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD是直角梯形,其中DA⊥AB,AD∥BC.PA=2AD=BC=2,AB=2

(1)求异面直线PC与AD所成角的大小;
(2)若平面ABCD内有一经过点C的曲线E,该曲线上的任一动点Q都满足PQ与AD所成角的大小恰等于PC与AD所成角.试判断曲线E的形状并说明理由;
(3)在平面ABCD内,设点Q是(2)题中的曲线E在直角梯形ABCD内部(包括边界)的一段曲线CG上的动点,其中G为曲线E和DC的交点.以B为圆心,BQ为半径r的圆分别与梯形的边AB、BC交于M、N两点.当Q点在曲线段CG上运动时,试求圆半径r的范围及VPBMN的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一辆赛车在一个周长为的封闭跑道上行驶,跑道由几段直道和弯道组成,图反映了赛车在“计时赛”整个第二圈的行驶速度与行驶路程之间的关系.

图1

图2

根据图有以下四个说法:

在这第二圈的之间,赛车速度逐渐增加;

在整个跑道中,最长的直线路程不超过

大约在这第二圈的之间,赛车开始了那段最长直线路程的行驶;

在图的四条曲线(注:为初始记录数据位置)中,曲线最能符合赛车的运动轨迹.

其中,所有正确说法的序号是(

A. ①②③ B. ②③ C. ①④ D. ③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:x、y、z是正实数,且x+2y+3z=1,
(1)求 的最小值;
(2)求证:x2+y2+z2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数是实数集R上的奇函数,, .

(1)的值和函数的表达式;

(2)求证:方程在区间上有唯一解.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)若对任意,都有恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案