精英家教网 > 高中数学 > 题目详情
17.在直角坐标系xOy中,直线l过点M(3,4),其倾斜角为45°,圆C的方程为x2+(y-2)2=4圆C与直线l交于A、B,则|MA|•|MB|的值为9.

分析 求出直线l的参数方程,代入圆方程,利用|MA|•|MB|=|t1|•|t2|=|t1t2|即可得出.

解答 解:∵直线l过点M(3,4),其倾斜角为45°,
∴直线l的参数方程 $\left\{\begin{array}{l}{x=3+tcos45°}\\{y=4+tsin45°}\end{array}\right.$,(t为参数).
即 $\left\{\begin{array}{l}{x=3+\frac{\sqrt{2}}{2}t}\\{y=4+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数)代入圆方程得:t2+5$\sqrt{2}$t+9=0,
设A、B对应的参数分别为t1、t2,则t1+t2=5$\sqrt{2}$,t1t2=9,
于是|MA|•|MB|=|t1|•|t2|=|t1t2|=9,
故答案为:9.

点评 本题考查了直线参数方程的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.函数f(x)=x3-2x2+x+4在(-2,0)内是(  )
A.减函数
B.增函数
C.在(-2,-1)内为增函数.在(-1,0)内为减函数
D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.集合A={1,2,3}的所有子集的个数为(  )
A.5个B.6个C.7个D.8个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若a>0,使不等式|x-4|+|x-3|<a在R上的解集不是空集的a的取值范围是(  )
A.0<a<1B.a=1C.a≥1D.a>1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若$cos(π-α)=\frac{1}{3}且α为第二象限的角,则tan2α$的值为(  )
A.$\frac{{7\sqrt{2}}}{2}$B.$-\frac{{7\sqrt{2}}}{2}$C.$\frac{{4\sqrt{2}}}{7}$D.$-\frac{{4\sqrt{2}}}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)的定义域为R,若存在常数k,使得$|{f(x)}|≤\frac{k}{2017}|x|$对所有实数x均成立,则称函数f(x)为“期望函数”,下列函数中“期望函数”的个数是(  )
①f(x)=x2②f(x)=xex③$f(x)=\frac{x}{{{x^2}-x+1}}$④$f(x)=\frac{x}{{{e^x}+1}}$.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),该椭圆上、左、下顶点及右焦点围成的四边形面积为3$\sqrt{3}$,离心率为$\frac{1}{2}$.
(1)求椭圆的方程;
(2)如图,若矩形ABCD的四条边都与该椭圆相切,求矩形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.不等式$\frac{{{x^2}-x-6}}{x}≤0$的解集为(-∞,-2]∪(0,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列命题正确的是(  )
A.经过三点确定一个平面
B.经过一条直线和一个点确定一个平面
C.三条平行直线必共面
D.两两相交且不共点的三条直线确定一个平面

查看答案和解析>>

同步练习册答案