精英家教网 > 高中数学 > 题目详情
7.函数f(x)=x3-2x2+x+4在(-2,0)内是(  )
A.减函数
B.增函数
C.在(-2,-1)内为增函数.在(-1,0)内为减函数
D.以上都不对

分析 对函数f(x)求导数,利用导数判断函数f(x)在(-2,0)内的单调性即可.

解答 解:函数f(x)=x3-2x2+x+4,
∴f′(x)=3x2-4x+1=(3x-1)(x-1),
令f′(x)=0,解得x=$\frac{1}{3}$或x=1;
∴x<$\frac{1}{3}$时,f′(x)>0,f(x)是单调增函数;
∴f(x)在(-2,0)内是单调增函数.
故选:B.

点评 本题考查了利用函数的导数判断单调性问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图,在四棱锥P-ABCD中,底面ABCD为边长为2的菱形,∠DAB=60°,△PAD为正三角形,PB=$\sqrt{6}$.
(1)证明:平面PAD⊥平面ABCD;
(2)E为线段PB上的点,平面PAD与平面ACE所成锐二面角为30°,$\overrightarrow{PE}$=λ$\overrightarrow{PB}$,求出λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线方程为y=±2$\sqrt{2}$x,则该双曲线的离心率为(  )
A.$\frac{{3\sqrt{2}}}{2}$B.$\frac{{2\sqrt{2}}}{3}$C.3D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.三角形ABC中,BC=4,且$AB=\sqrt{3}AC$,则三角形ABC面积最大值为$4\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在等差数列{an}的前n项和为Sn,若a1+a2+a3=9,a4+a5+a6=27,求a7+a8+a9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{lo{g}_{0.5}(-x),x<0}\end{array}\right.$,若f(a)-2f(-a)>0,则实数a的取值范围是(  )
A.a>1B.-1<a<0C.a>1或-1<a<0D.-1<a<1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知点P为直线y=x+1上的一点,M,N分别为圆C1:(x-4)2+(y-1)2=4与圆C2:x2+(y-2)2=1上的点,则|PM|-|PN|的最大值为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=aex(x+1)(其中e为自然对数的底数),g(x)=x2+4x+b,已知它们在x=0处有相同的切线.
(1)求函数y=f(x)的增区间;
(2)求曲线y=g(x)和直线y=x+2所围成的图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在直角坐标系xOy中,直线l过点M(3,4),其倾斜角为45°,圆C的方程为x2+(y-2)2=4圆C与直线l交于A、B,则|MA|•|MB|的值为9.

查看答案和解析>>

同步练习册答案