【题目】【2017河北唐山二模】已知函数的图象与轴相切,.
(Ⅰ)求证:;
(Ⅱ)若,求证:
【答案】(Ⅰ)见解析;(Ⅱ)见解析.
【解析】试题分析:(Ⅰ)对函数求导,设的图象与轴相交于点,由题意可得在该点处导数值为0,函数值为0,构造方程组可得的值,将题意转化为,设,利用导数判断其单调性求出最大值即可;(Ⅱ)构造函数,对其求导结合(Ⅰ)可得的单调性,从而有,化简整理可得,运用换底公式及(Ⅰ)中的不等式可得,再次运用可得结论.
试题解析:(Ⅰ),设的图象与轴相交于点,
则即
解得.
所以,
等价于.
设,则,
当时,,单调递增;
当时,,单调递减,
所以,
即,(*),所以.
(Ⅱ)设,则,
由(Ⅰ)可知,当时,,
从而有,所以单调递增,
又,所以,
从而有,即,
所以,即,
,
又,所以,
又,所以.
综上可知,.
科目:高中数学 来源: 题型:
【题目】已知左焦点为F(﹣1,0)的椭圆过点E(1, ).过点P(1,1)分别作斜率为k1 , k2的椭圆的动弦AB,CD,设M,N分别为线段AB,CD的中点.
(1)求椭圆的标准方程;
(2)若P为线段AB的中点,求k1;
(3)若k1+k2=1,求证直线MN恒过定点,并求出定点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中:①、若m>0,则方程x2﹣x+m=0有实根. ②、若x>1,y>1,则x+y>2的逆命题. ③、对任意的x∈{x|﹣2<x<4},|x﹣2|<3的否定形式. ④、△>0是一元二次方程ax2+bx+c=0有一正根和一负根的充要条件.是真命题的有 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列{an}的前n项和为Sn , 若对于任意的正整数n都有Sn=2an﹣3n.
(1)设bn=an+3,求证:数列{bn}是等比数列,并求出{an}的通项公式;
(2)求数列{nan}的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2017安徽阜阳二模】一企业从某生产线上随机抽取件产品,测量这些产品的某项技术指标值,得到的频率分布直方图如图.
(1)估计该技术指标值平均数;
(2)在直方图的技术指标值分组中,以落入各区间的频率作为取该区间值的频率,若,则产品不合格,现该企业每天从该生产线上随机抽取件产品检测,记不合格产品的个数为,求的数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某次测验中,有6位同学的平均成绩为75分.用xn表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:
编号n | 1 | 2 | 3 | 4 | 5 |
成绩xn | 70 | 76 | 72 | 70 | 72 |
(1)求第6位同学的成绩x6 , 及这6位同学成绩的标准差s;
(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量 =(1,2), =(x,1);
(1)若( +2 )⊥(2 ﹣ )时,求x的值;
(2)若向量 与向量 的夹角为锐角,求x的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2017南京一模19】设函数,.
(1)当时,解关于的方程(其中为自然对数的底数);
(2)求函数的单调增区间;
(3)当时,记函数,是否存在整数,使得关于的不等式
有解?若存在,请求出的最小值;若不存在,请说明理由.
(参考数据:,)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【南京市、盐城市2017届高三年级第二次模拟】(本小题满分14分)
在一张足够大的纸板上截取一个面积为3600平方厘米的矩形纸板ABCD,然后在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒(如图).设小正方形边长为x厘米,矩形纸板的两边AB,BC的长分别为a厘米和b厘米,其中a≥b.
(1)当a=90时,求纸盒侧面积的最大值;
(2)试确定a,b,x的值,使得纸盒的体积最大,并求出最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com