精英家教网 > 高中数学 > 题目详情

【题目】数列{an}的前n项和为Sn , 若对于任意的正整数n都有Sn=2an﹣3n.
(1)设bn=an+3,求证:数列{bn}是等比数列,并求出{an}的通项公式;
(2)求数列{nan}的前n项和.

【答案】
(1)解:∵Sn=2an﹣3n,对于任意的正整数都成立,

∴Sn+1=2an+1﹣3n﹣3,

两式相减,得a n+1=2an+1﹣2an﹣3,即an+1=2an+3,

∴an+1+3=2(an+3),

所以数列{bn}是以2为公比的等比数列,

由已知条件得:S1=2a1﹣3,a1=3.

∴首项b1=a1+3=6,公比q=2,

∴an=62n1﹣3=32n﹣3


(2)解:∵nan=3×n2n﹣3n

∴Sn=3(12+222+323+…+n2n)﹣3(1+2+3+…+n),

2Sn=3(122+223+324+…+n2n+1)﹣6(1+2+3+…+n),

∴﹣Sn=3(2+22+23+…+2n﹣n2n+1)+3(1+2+3+…+n)

=

∴Sn=


【解析】(1)通过递推关系式求出an与an+1的关系,推出{an+3}即数列{bn}是等比数列,求出数列{bn}的通项公式即可求出{an}的通项公式;(2)写出数列{nan}的通项公式,然后写出前n项和的表达式通过错位相减法求解即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】知函数f(x)=31+|x| ,则使得f(x)>f(2x﹣1)成立的x的取值范围是(
A.
B.
C.(﹣
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=log3(1+x)﹣log3(1﹣x).
(1)判断函数f(x)的奇偶性,并加以证明;
(2)已知函数g(x)=log ,当x∈[ ]时,不等式 f(x)≥g(x)有解,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(Ⅰ)若方程有两根,求的取值范围;

(Ⅱ)在(Ⅰ)的前提下,设,求证: 随着的减小而增大;

(Ⅲ)若不等式恒成立,求证: ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)当时,求的最大值;

(2)讨论函数的单调性;

(3)若在定义域内恒成立,求实数的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=Asin(ωx+φ)在一个周期内的图象如图,此函数的解析式为(
A.y=2sin(2x+
B.y=2sin(2x+
C.y=2sin(
D.y=2sin(2x﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定点,圆C

(1)过点向圆C引切线l,求切线l的方程;

(2)过点A作直线 交圆C于P,Q,且,求直线的斜率k;

(3)定点M,N在直线 上,对于圆C上任意一点R都满足,试求M,N两点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆, 在抛物线上,圆过原点且与的准线相切.

(Ⅰ) 求的方程;

(Ⅱ) 点,点(与不重合)在直线上运动,过点的两条切线,切点分别为, .求证: (其中为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于x的不等式(m﹣1)x2﹣mx+m﹣1>0的解集为空集,则实数m的取值为

查看答案和解析>>

同步练习册答案