【题目】若关于x的不等式(m﹣1)x2﹣mx+m﹣1>0的解集为空集,则实数m的取值为 .
【答案】m≤ ![]()
【解析】解:∵关于x的不等式(m﹣1)x2﹣mx+m﹣1>0的解集为, ∴不等式(m﹣1)x2﹣mx+m﹣1≤0恒成立
①当m﹣1=0时,(m﹣1)x2﹣mx+m﹣1≤0,即x≥0,不是对任意x∈R恒成立;
②当m﹣1≠0时,x∈R,使(m﹣1)x2﹣mx+m﹣1≤0,
即m﹣1<0且△=(﹣m)2﹣4(m﹣1)(m﹣1)≤0,
解得m≤
综上,实数m的取值范围是m≤
.
所以答案是m≤
.
【考点精析】解答此题的关键在于理解解一元二次不等式的相关知识,掌握求一元二次不等式![]()
解集的步骤:一化:化二次项前的系数为正数;二判:判断对应方程的根;三求:求对应方程的根;四画:画出对应函数的图象;五解集:根据图象写出不等式的解集;规律:当二次项系数为正时,小于取中间,大于取两边.
科目:高中数学 来源: 题型:
【题目】数列{an}的前n项和为Sn , 若对于任意的正整数n都有Sn=2an﹣3n.
(1)设bn=an+3,求证:数列{bn}是等比数列,并求出{an}的通项公式;
(2)求数列{nan}的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,曲线
:
,曲线
:
(
为参数),以坐标原点
为极点,
轴正半轴为极轴,建立极坐标系.
(Ⅰ)求曲线
,
的极坐标方程;
(Ⅱ)曲线
:
(
为参数,
,
)分别交
,
于
,
两点,当
取何值时,
取得最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在
中,
的中点为
,且
,点
在
的延长线上,且
.固定边
,在平面内移动顶点
,使得圆
与边
,边
的延长线相切,并始终与
的延长线相切于点
,记顶点
的轨迹为曲线
.以
所在直线为
轴,
为坐标原点如图所示建立平面直角坐标系.
![]()
(Ⅰ)求曲线
的方程;
(Ⅱ)设动直线
交曲线
于
两点,且以
为直径的圆经过点
,求
面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
,半径为
的圆
与
相切,圆心
在
轴上且在直线
的上方.
(Ⅰ)求圆
的标准方程;
(Ⅱ)过点
的直线与圆
交于
两点(
在
轴上方),问在
轴正半轴上是否存在点
,使得
轴平分
?若存在,请求出点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知:
、
、
是同一平面上的三个向量,其中
=(1,2).
(1)若|
|=2
,且
∥
,求
的坐标.
(2)若|
|=
,且
+2
与2
﹣
垂直,求
与
的夹角θ
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a1=3,an=2an﹣1+(t+1)2n+3m+t(t,m∈R,n≥2,n∈N*)
(1)t=0,m=0时,求证:
是等差数列;
(2)t=﹣1,m=
是等比数列;
(3)t=0,m=1时,求数列{an}的通项公式和前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知空间四边形ABCD的两条对角线的长AC=6,BD=8,AC与BD所成的角为30o , E,F,G,H分别是AB,BC,CD,DA的中点,求四边形EFGH的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com