精英家教网 > 高中数学 > 题目详情

【题目】已知: 是同一平面上的三个向量,其中 =(1,2).
(1)若| |=2 ,且 ,求 的坐标.
(2)若| |= ,且 +2 与2 垂直,求 的夹角θ

【答案】
(1)解:设

且| |=2

∴x=±2

=(2,4)或 =(﹣2,﹣4)


(2)解:∵( +2 )⊥(2

∴( +2 )(2 )=0

∴2 2+3 ﹣2 2=0

∴2| |2+3| || |cosθ﹣2| |2=0

∴2×5+3× × cosθ﹣2× =0

∴cosθ=﹣1

∴θ=π+2kπ

∵θ∈[0,π]

∴θ=π


【解析】(1)设出 的坐标,利用它与 平行以及它的模等于2 ,待定系数法求出 的坐标.(2)由 +2 与2 垂直,数量积等于0,求出夹角θ的余弦值,再利用夹角θ的范围,求出此角的大小.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定点,圆C

(1)过点向圆C引切线l,求切线l的方程;

(2)过点A作直线 交圆C于P,Q,且,求直线的斜率k;

(3)定点M,N在直线 上,对于圆C上任意一点R都满足,试求M,N两点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若3cos(2α+β)+5cosβ=0,则tan(α+β)tanα的值为(
A.±4
B.4
C.﹣4
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于x的不等式(m﹣1)x2﹣mx+m﹣1>0的解集为空集,则实数m的取值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三角形的三内角A、B、C所对边的长分别为a、b、c,设向量 ,若
(1)求角B的大小;
(2)若△ABC的面积为 ,求AC边的最小值,并指明此时三角形的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,动点满足,设动点的轨迹为曲线,将曲线上所有点的纵坐标变为原来的一半,横坐标不变,得到曲线.

(1)求曲线的方程;

(2)是曲线上两点,且 为坐标原点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=4x2+ax+2,不等式f(x)<c的解集为(﹣1,2).
(1)求a的值;
(2)解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的奇函数,且当x≥0时f(x)=
(1)求f(x)的解析式;
(2)判断f(x)的单调性(不必证明);
(3)若对任意的t∈R,不等式f(k﹣3t2)+f(t2+2t)≤0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C的焦点为F,直线y轴的交点为P,与C的交点为Q,且.

1)求C的方程;

2)过F的直线C相交于AB两点,若AB的垂直平分线C相较于MN两点,且AMBN四点在同一圆上,求的方程.

查看答案和解析>>

同步练习册答案