精英家教网 > 高中数学 > 题目详情
6.若$α∈({\frac{π}{2},π}),tanα=-\frac{1}{4}$,则sin(α+π)=-$\frac{\sqrt{17}}{17}$.

分析 由α的范围可得sinα>0,cosα<0,由诱导公式及同角三角函数关系式即可求值.

解答 解:∵α∈($\frac{π}{2}$,π),
∴cosα=-$\sqrt{\frac{1}{1+ta{n}^{2}α}}$=-$\sqrt{\frac{1}{1+\frac{1}{16}}}$=-$\sqrt{\frac{16}{17}}$,
sin(α+π)=-sinα=-$\sqrt{1-co{s}^{2}α}$=-$\sqrt{1-\frac{16}{17}}$=-$\frac{\sqrt{17}}{17}$.
故答案为:-$\frac{\sqrt{17}}{17}$.

点评 本题主要考查了诱导公式,同角三角函数基本关系式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.如图,AB,AC是⊙O的切线,ADE是⊙O的割线,求证:BE•CD=BD•CE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知平面直角坐标系 xOy中,过点 P(-1,-2)的直线 l的参数方程为 $\left\{\begin{array}{l}x=-1+tcos{45°}\\ y=-2+tsin{45°}\end{array}\right.$(t为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为 ρsinθtanθ=2a(a>0),直线 l与曲线C相交于不同的两点M.N
(Ⅰ)求曲线C和直线 l的普通方程;
(Ⅱ)若|PM|=|MN|,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.运行如图所示的程序,若输出y的值为1,则可输入x的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某中学刚搬迁到新校区,学校考虑,若非住校生上学路上单程所需时间人均超过20分钟,则学校推迟5分钟上课.为此,校方随机抽取100个非住校生,调查其上学路上单程所需时间(单位:分钟),根据所得数据绘制成如下频率分布直方图,其中时间分组为[0,10),[10,20),[20,30),[30,40),[40,50].
(Ⅰ)求频率分布直方图中a的值;
(Ⅱ)从统计学的角度说明学校是否需要推迟5分钟上课;
(Ⅲ)若从样本单程时间不小于30分钟的学生中,随机抽取2人,求恰有一个学生的单程时间落在[40,50]上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设抛物线$y=\frac{1}{4}{x^2}$上的一点P到x轴的距离是4,则点P到该抛物线焦点的距离为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数$f(x)={e^{1-{x^2}}}$(e=2.71828…为自然对数的底数)的部分图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如果双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一条渐近线与直线$\sqrt{3}x-y+\sqrt{3}=0$平行,则双曲线的离心率为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.定义在(0,+∞)上的三个函数f (x),g(x),h(x),已知f(x)=lnx,g(x)=x2-af(x)
h(x)=x-a$\sqrt{x}$,且g(x)在x=1处取得极值.
(Ⅰ)求a的值及h(x)的单调区间;
(Ⅱ)求证:当1<x<e2时,恒有x<$\frac{2+f(x)}{2-f(x)}$.

查看答案和解析>>

同步练习册答案