分析 (1)利用等差数列与等比数列的通项公式即可得出.
(2)cn=1+log3$\frac{{b}_{n}}{2}$=n,dn=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,再利用“裂项求和”方法即可得出.
解答 解:(1)数列{an}满足an+2-2an+1+an=0(a∈N*),∴数列{an}是等差数列,设公差为d.
∵a3=5,其前7项和为42,∴a1+2d=5,7a1+$\frac{7×6}{2}$d=42,
解得a1=3,d=1.∴an=3+(n-1)=n+2.
设等比数列{bn}的公比为q,∵b1=a1-1=2,b2=a4=6,∴q=3.
∴bn=2×3n-1.
(2)cn=1+log3$\frac{{b}_{n}}{2}$=n,
dn=$\frac{1}{{c}_{n}{c}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,
∴数列{dn}的前n项和Tn=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$
=1-$\frac{1}{n+1}$
=$\frac{n}{n+1}$.
点评 本题考查了等差数列与等比数列的通项公式、对数原式性质、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{\sqrt{5}}{3}$ | C. | $\frac{1}{3}$ | D. | $\frac{2\sqrt{2}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2016 | B. | 4026 | C. | 4027 | D. | 4028 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com