精英家教网 > 高中数学 > 题目详情
17.已知数列{an}满足an+2-2an+1+an=0(a∈N*),a3=5,其前7项和为42,设数列{bn}是等比数列,b1=a1-1,b2=a4
(1)求数列{an},{bn}的通项公式;
(2)令cn=1+log3$\frac{{b}_{n}}{2}$,dn=$\frac{1}{{c}_{n}{c}_{n+1}}$,求数列{dn}的前n项和Tn

分析 (1)利用等差数列与等比数列的通项公式即可得出.
(2)cn=1+log3$\frac{{b}_{n}}{2}$=n,dn=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,再利用“裂项求和”方法即可得出.

解答 解:(1)数列{an}满足an+2-2an+1+an=0(a∈N*),∴数列{an}是等差数列,设公差为d.
∵a3=5,其前7项和为42,∴a1+2d=5,7a1+$\frac{7×6}{2}$d=42,
解得a1=3,d=1.∴an=3+(n-1)=n+2.
设等比数列{bn}的公比为q,∵b1=a1-1=2,b2=a4=6,∴q=3.
∴bn=2×3n-1
(2)cn=1+log3$\frac{{b}_{n}}{2}$=n,
dn=$\frac{1}{{c}_{n}{c}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,
∴数列{dn}的前n项和Tn=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$
=1-$\frac{1}{n+1}$
=$\frac{n}{n+1}$.

点评 本题考查了等差数列与等比数列的通项公式、对数原式性质、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知集合A={(x,y)|2x-y=0},B={(x,y)|3x+y=0},则A∩B={(0,0)}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.为积极配合松桃苗族自治县成立60周年县庆活动志愿者招募工作,我校成立由2名同学组成的志愿者招募宣传队,经过初步选定,2名男同学,2名女同学共4名同学成为候选人,每位候选人当选宣传队队员的机会是相同的.
(1)求当选的2名同学中恰有1名男同学的概率;
(2)求当选的2名同学中至少有1名女同学的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}满足an+2-2an+1+an=0(n∈N*),a2=4,其前7项和为42,设数列{bn}是等比数列,数列{bn}的前n项和为Sn满足b1=a1-1,S30-(310+1)S20+310S10=0.
(1)求数列{an},{bn}的通项公式;
(2)令cn=1+log3$\frac{{b}_{n}}{2}$,dn=$\frac{{a}_{n}}{{c}_{n}}$+$\frac{{c}_{n}}{{a}_{n}}$,求证:数列{dn}的前n项和Tn≥$\frac{10}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,内角A,B,C 所对的边分别为a,b,c,已知a2,$\frac{3{b}^{2}}{4}$,c2成等差数列,则sinB的最大值为(  )
A.$\frac{2}{3}$B.$\frac{\sqrt{5}}{3}$C.$\frac{1}{3}$D.$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=$\sqrt{1-x}$的定义域是(  )
A.(-∞,1]B.(-∞,0]C.(-∞,1)D.(-∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知a>0,设函数f(x)=$\frac{201{6}^{x+1}+2011}{201{6}^{x}+1}$+x3(x∈[-a,a])的最大值为M,最小值为N,则M+N的值为(  )
A.2016B.4026C.4027D.4028

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.2016年10月28日,经历了近半个世纪风雨的南京长江大桥真“累”了,终于停下来喘口气了,之前大桥在改善我们城市的交通状况方面功不可没.据相关数据统计,一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数.当桥上的车流密度达到280辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过30辆/千米时,车流速度为50千米/小时.研究表明,当30≤x≤280时,车流速度v是车流密度x的一次函数.
(1)当0≤x≤280时,求函数v(x)的表达式;
(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时) f(x)=x•v(x)可以达到最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知点A(m,-3)在抛物线y2=2px(p>0)上,它到抛物线焦点F的距离为5,求m和p的值.

查看答案和解析>>

同步练习册答案