分析 (1)设v(x)=ax+b.利用x的范围,列出方程组求解a,b,即可得到函数的解析式.
(2)求出车流量f(x)=v(x)•x的表达式,然后求解最大值即可.
解答 解:(1)由题意,得当0≤x≤30时,v(x)=50;
当30<x≤280时,
设v(x)=ax+b.
由已知$\left\{\begin{array}{l}{280a+b=0}\\{30a+b=50}\end{array}\right.$,解得a=-0.2,b=56,
故函数v(x)的表达式为v(x)=$\left\{\begin{array}{l}{50,0≤x≤30}\\{-0.2x+56,30<x≤280}\end{array}\right.$;
(2)f(x)=x•v(x)=$\left\{\begin{array}{l}{50x,0≤x≤30}\\{(-0.2x+56)x,30<x≤280}\end{array}\right.$,
当0≤x≤30时,f(x)≤1500.
当30<x≤280时,f(x)=-0.2(x-140)2+3920,∴x=140,f(x)max=3920
∴车流密度x为140,f(x)=x•v(x)可以达到最大为3920.
点评 本题考查函数模型的选择与应用,二次函数的性质以及最值的求法,分段函数的应用,考查转化思想以及计算能力.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|x<$\frac{2}{a}$或x>1} | B. | {x|$\frac{2}{a}$<x<1} | C. | {x|x<1或x>$\frac{2}{a}$} | D. | {x|1<x<$\frac{2}{a}$} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com