精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)=sin(ωx﹣ )﹣2cos2 +1(ω>0),直线y= 与函数f(x)的图象相邻两交点的距离为π.
(1)求ω的值;
(2)在锐角△ABC中,内角A,B,C所对的边分别是a,b,c,若点( ,0)是函数y=f(x)图象的一个对称中心,求sinA+sinC的取值范围.

【答案】
(1)解:f(x)=sin(ωx﹣ )﹣2cos2 +1

= sinωx﹣ cosωx﹣cosωx= sinωx﹣ cosωx

=

∵直线y= 与函数f(x)的图象相邻两交点的距离为π,

∴周期T= ,解得ω=2


(2)解:∵点( ,0)是函数y=f(x)图象的一个对称中心,

∴2× =kπ(k∈Z),则B=kπ+ (k∈Z),

由0<B<π得B=

则C=π﹣A﹣B=

因为锐角三角形 所以 ,得

所以sinA+sinC=sinA+sin(

=sinA+ cosA+ sinA= sinA+ cosA

=

得,

所以


【解析】(1)利用二倍角余弦公式及变形,两角差的正弦公式化简解析式,由题意和正弦函数的图象与性质求出周期,由三角函数的周期公式求出ω的值;(2)由正弦函数图象的对称中心和题意列出方程,由内角的范围求出角B,根据内角和定理用A表示出C,由锐角三角形列出不等式组,求出A的范围,代入sinA+sinC利用两角和差的正弦公式化简,由整体思想、正弦函数的图象与性质,求出sinA+sinC的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】调查某医院某段时间内婴儿出生的时间与性别的关系,得到下面的数据:出生时间在晚上的男婴为24人,女婴为8人;出生时间在白天的男婴为31人,女婴为26人.

(1)将2×2列联表补充完整.

性别

出生时间

总计

晚上

白天

男婴

女婴

总计

(2)能否在犯错误的概率不超过0.1的前提下认为婴儿性别与出生时间有关系?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,则输出的s的值是(  )

A. 3 B. -3 C. -4 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数f(x)满足:
(1)函数y=f(x﹣1)的图象关于点(1,0)对称;
(2)对x∈R,f( ﹣x)=f( +x)成立
(3)当x∈(﹣ ,﹣ ]时,f(x)=log2(﹣3x+1),则f(2011)=( )
A.﹣5
B.﹣4
C.﹣3
D.﹣2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn=pn+q(p≠0且p≠1),求证:数列{an}为等比数列的充要条件为q=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为分析学生入学时的数学成绩对高一年级数学学习的影响,在高一年级学生中随机抽取10名学生,统计他们入学时的数学成绩和高一期末的数学成绩,如下表:

学生编号

1

2

3

4

5

6

7

8

9

10

入学成绩x(分)

63

67

45

88

81

71

52

99

58

76

高一期末

成绩y(分)

65

78

52

82

92

89

73

98

56

75

(1)求相关系数r;

(2)求y关于x的线性回归方程;

(3)若某学生入学时的数学成绩为80分,试估计他高一期末的数学成绩.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知复数.

(1)当实数m取什么值时,复数z是纯虚数?

(2)z在复平面内对应的点在第二、四象限的角平分线上,|z|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】环保部门对5家造纸厂进行排污检查,若检查不合格,则必须整改,整改后经复查仍然不合格的,则关闭.设每家造纸厂检查是否合格是相互独立的,且每家造纸厂检查前合格的概率是 ,整改后检查合格的概率是 ,求:
(Ⅰ)恰好有两家造纸厂必须整改的概率;
(Ⅱ)至少要关闭一家造纸厂的概率;
(Ⅲ)平均多少家造纸厂需要整改?(其中( 5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥E-ABCD中,四边形ABCD是平行四边形,△BCE是等边三角形,△ABE是等腰直角三角形,∠BAE=90°,且AC=BC.

(1)证明:平面ABE⊥平面BCE;

(2)求二面角A-DE-C的余弦值.

查看答案和解析>>

同步练习册答案