精英家教网 > 高中数学 > 题目详情
6.根据表格中的数据,可以判定方程ex-x-2=0的一个根所在的区间为(  )
x-10123
 ex-x-2-0.63-1-0.283.3915.09
A.(-1,0)B.(0,1)C.(1,2)D.(2,3)

分析 本题考查的是方程零点存在的大致区间的判断问题.在解答时,应先将方程的问题转化为函数零点大致区间的判断问题,结合零点存在性定理即可获得解答.

解答 解:令f(x)=ex-x-2,
由表知f(1)=2.72-3<0,f(2)=7.39-4>0,
∴方程ex-x-2=0的一个根所在的区间为(1,2).
故选:C.

点评 本题考查的是方程零点存在的大致区间的判断问题.在解答的过程当中充分体现了函数与方程的思想、问题转化的思想以及数据处理的能力.值得同学们体会和反思.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.边长之比为7:8:13的三角形的最大角是$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知f(x)是定义在R上且周期为4的函数,在区间[-2,2]上,$f(x)=\left\{\begin{array}{l}mx+2(-2≤x<0)\\ \frac{nx-2}{x+1}(0≤x≤2)\end{array}\right.$,其中m,n∈R,若f(1)=f(3),则m+n=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若角α与角β的终边关于y轴对称,则(  )
A.α+β=π+kπ(k∈Z)B.α+β=π+2kπ(k∈Z)C.$α+β=\frac{π}{2}+kπ(k∈Z)$D.$α+β=\frac{π}{2}+2kπ(k∈Z)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设抛物线E:y2=2px(p>0)的焦点为F,点M为抛物线E上一点,|MF|的最小值为3,若点P为抛物线E上任意一点,A(4,1),则|PA|+|PF|的最小值为(  )
A.4+$\frac{\sqrt{3}}{2}$B.7C.4+2$\sqrt{3}$D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.定义在R上的函数f(x)=$\left\{\begin{array}{l}{(1-2a)x+\frac{1}{2},x∈(-∞,1]}\\{alo{g}_{a}x,x∈(1,+∞)}\end{array}\right.$(其中a>0,且a≠1),对于任意x1≠x2都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立,则实数a的取值范围是(  )
A.[$\frac{3}{4}$,1)B.($\frac{1}{2}$,$\frac{3}{4}$]C.($\frac{1}{2}$,$\frac{3}{4}$)D.($\frac{1}{2}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知y=f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2-2x.
(1)当x<0时,求函数f(x)的解析式;
(2)若函数y=f(x)-kx+4(k≠0)在(-∞,0)上恰有两个零点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知Sn为等差数列{an}的前n项和,且a2=3,S4=16,
(1)求数列{an}的通项公式;
(2)设bn=$\frac{2}{{a}_{n}•{a}_{n+1}}$(n∈N*),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.计算:
(1)$(\frac{64}{27})^{\frac{1}{3}}$+(2$\frac{7}{9}$)0.5-($\root{3}{\frac{8}{27}}$+0.027${\;}^{-\frac{1}{3}}$)${\;}^{\frac{1}{2}}$
(2)log3$\sqrt{27}$-log3$\sqrt{3}$-lg25-lg4+ln(e2)+2${\;}^{\frac{1}{2}lo{g}_{2}4}$.

查看答案和解析>>

同步练习册答案