精英家教网 > 高中数学 > 题目详情
20.若数列{bn}是首项为$\frac{1}{2}$,公比为$\frac{1}{2}$的等比数列,则数列{nbn}的前n项和Tn=(  )
A.2-($\frac{1}{2}$)n-1B.2-($\frac{1}{2}$)nC.2-$\frac{n+2}{{2}^{n}}$D.2-$\frac{n+1}{{2}^{n}}$

分析 利用等比数列的求和公式计算可知nbn=n•$\frac{1}{{2}^{n}}$,进而利用错位相减法计算即得结论.

解答 解:∵数列{bn}是首项为$\frac{1}{2}$,公比为$\frac{1}{2}$的等比数列,
∴nbn=n•$\frac{1}{{2}^{n}}$,
∴Tn=1•$\frac{1}{2}$+2•$\frac{1}{{2}^{2}}$+…+n•$\frac{1}{{2}^{n}}$,
$\frac{1}{2}$Tn=1•$\frac{1}{{2}^{2}}$+2•$\frac{1}{{2}^{3}}$+…+(n-1)•$\frac{1}{{2}^{n}}$+n•$\frac{1}{{2}^{n+1}}$,
两式相减得:$\frac{1}{2}$Tn=$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n}}$-n•$\frac{1}{{2}^{n+1}}$,
∴Tn=1+$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n-1}}$-n•$\frac{1}{{2}^{n}}$
=$\frac{1-\frac{1}{{2}^{n}}}{1-\frac{1}{2}}$-n•$\frac{1}{{2}^{n}}$
=2-(n+2)•$\frac{1}{{2}^{n}}$,
故选:C.

点评 本题考查数列的通项及前n项和,考查错位相减法,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知直线l的参数方程为$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数,0<α<π),以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相同的长度单位,建立极坐标系.曲线C的极坐标方程为ρsin2θ=4cosθ.
(1)求曲线C的直角坐标方程:
(2)设直线1与曲线C相交于A、B两点,当α变化时,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知点A(1,0),过点A可作圆x2+y2+mx+1=0的两条切线,则m的取值范围是(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某商场有6个门,如果某人从其中的任意一个门进入商场,并且要求从其他的门出去,共有多少种不同的进出商场的方式?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=2,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,$\overrightarrow{a}$在$\overrightarrow{a}$+$\overrightarrow{b}$上的投影等于(  )
A.$\sqrt{2}$B.2C.$\sqrt{3}$D.4+2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知sinα+cosα=0,则2sinαcosα-cos2α的值是$-\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知向量$\overrightarrow{a}$,满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,且对一切实数x,|$\overrightarrow{a}$+x$\overrightarrow{b}$|≥|$\overrightarrow{a}$+$\overrightarrow{b}$|恒成立,则$\overrightarrow{a}$,$\overrightarrow{b}$的夹角的大小为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.i是虚数单位,i2015+i2016=1-i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.为支援西部教育事业,从某校118名教师中随机抽取16名教师组成暑期西部讲师团.若先用简单随机抽样从118名教师中剔除6名,剩下的112名再按系统抽样的方法进行,则每人入选的可能性(  )
A.不全相等B.都相等,且为$\frac{8}{59}$C.均不相等D.都相等,且为$\frac{1}{7}$

查看答案和解析>>

同步练习册答案