精英家教网 > 高中数学 > 题目详情

【题目】古希腊著名的毕达哥拉斯学派把这样的数称为三角形数,而把

这样的数称为正方形数.如图,可以发现任何一个大于正方形数都可以看作两个相邻

三角形数之和,下列四个等式:;②;③

中符合这一规律的等式是_____________.(填写所有正确结论的编号)

……

【答案】①③④ .

【解析】分析:根据题意,归纳可得三角形数正方形数的规律,进而可得两者之间的关系为,据此依次验证4个表达式可得答案.

详解:根据题意,分析可得:三角形数的规律是…;

正方形数的规律是,…;

且正方形数是这串数中相邻两数之和,

对于①,中,令n=6,可得36=15+21;

对于②,1831不是三角形数;

对于③,中,令n=8,可得

对于④,在中,令n=9,可得

只有①③④是对的;

故答案为:①③④.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】数据显示,某公司2018年上半年五个月的收入情况如下表所示:

月份

2

3

4

5

6

月收入(万元)

1.4

2.56

5.31

11

21.3

根据上述数据,在建立该公司2018年月收入(万元)与月份的函数模型时,给出两个函数模型供选择.

(1)你认为哪个函数模型较好,并简单说明理由;

(2)试用你认为较好的函数模型,分析大约从第几个月份开始,该公司的月收入会超过100万元?(参考数据

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,以原点O为极点,以x轴非负半轴为极轴建立极坐标系.已知直线l的方程为4ρcosθ﹣ρsinθ﹣25=0,曲线W: (t是参数).
(1)求直线l的直角坐标方程与曲线W的普通方程;
(2)若点P在直线l上,Q在曲线W上,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,对于任意的 ,都有, 当时,,且.

( I ) 求的值;

(II) 当时,求函数的最大值和最小值;

(III) 设函数,判断函数g(x)最多有几个零点,并求出此时实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是定义在正整数集上的函数,且满足:当成立时,总可推出

成立,那么下列命题总成立的是( )

A. 成立,则成立;

B. 成立,则成立;

C. 成立,则当时,均有成立;

D. 成立,则当时,均有成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(12分)

(1)若函数上为增函数,求实数的取值范围;

(2)当时,求上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求实数的取值范围;

(2)若存在,使得,求实数的取值范围;

(3)若对于恒成立,试问是否存在实数,使得成立?若存在,求出实数的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】观察下列方程,并回答问题:

;②;③;④;…

(1)请你根据这列方程的特点写出第个方程;

(2)直接写出第2009个方程的根;

(3)说出这列方程的根的一个共同特点.

查看答案和解析>>

同步练习册答案