精英家教网 > 高中数学 > 题目详情
11.如图,在圆C:(x+1)2+y2=16内有一点A(1,0),Q为圆C上一点,AQ的垂直平分线与C、Q的连线交于点M.
(1)求点M的轨迹方程;
(2)在x轴上是否存在一定点N(t,0),使得点M与点N的距离和它到直线l:x=4的距离的比是常数λ?若存在,求出点N及λ.

分析 (1)确定点M的轨迹是以(1,0),(-1,0)为焦点的椭圆,即可求点M的轨迹方程;
(2)由题意,$\frac{|MN|}{d}$=$\frac{\sqrt{(x-t)^{2}+{y}^{2}}}{|x-4|}$=$\sqrt{\frac{\frac{1}{4}{x}^{2}-2tx+({t}^{2}+3)}{{x}^{2}-8x+16}}$,由此可得比值,即可得出结论.

解答 解:(1)由题意知,点M在线段CQ上,从而有|CQ|=|MQ|+|MC|.
又点M在AQ的垂直平分线上,则|MA|=|MQ|,
∴|MA|+|MC|=|CQ|=4.∵A(1,0),C(-1,0),
∴点M的轨迹是以(1,0),(-1,0)为焦点的椭圆,
所以2a=4,a=2,b=$\sqrt{3}$
∴椭圆方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1…(6分)
(2)由题意,$\frac{|MN|}{d}$=$\frac{\sqrt{(x-t)^{2}+{y}^{2}}}{|x-4|}$=$\sqrt{\frac{\frac{1}{4}{x}^{2}-2tx+({t}^{2}+3)}{{x}^{2}-8x+16}}$,
∴$\frac{\frac{1}{4}}{1}=\frac{2t}{8}=\frac{{t}^{2}+3}{16}$,∴$t=1,λ=\frac{1}{2}$,即N(1,0),$λ=\frac{1}{2}$…(12分)

点评 本题考查椭圆的定义与方程,考查恒成立问题,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.下列结论中正确的是②③④.(写出所有正确结论的序号)
①若$\overrightarrow a•\overrightarrow b=0$,则$\overrightarrow a=0$或$\overrightarrow b=0$;
②若$|\overrightarrow a•\overrightarrow b|=|\overrightarrow a|•|\overrightarrow b|$,则$\overrightarrow a∥\overrightarrow b$;
③若$\overrightarrow a•\overrightarrow b=0$,则$|\overrightarrow a+\overrightarrow b|=|\overrightarrow a-\overrightarrow b|$;
④在△ABC中,点M满足$\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow 0$,若存在实数λ使得$\overrightarrow{AB}+\overrightarrow{AC}=λ•\overrightarrow{AM}$成立,则λ=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知A∈α,AB=5,$AC=2\sqrt{2}$,且AB与α所成角的正弦值为$\frac{4}{5}$,AC与α所成的角为45°,点B,C在平面α同侧,则BC长的范围为(  )
A.$[5-2\sqrt{2},5+2\sqrt{2}]$B.$[\sqrt{5},\sqrt{29}]$C.$[\sqrt{5},\sqrt{61}]$D.$[\sqrt{29},\sqrt{61}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,∠ABC=∠ADC=90°,∠BCD=60°,DC=BC=$\sqrt{3}$,AC和BD交于O点.
(1)求证:平面PBD⊥平面PAC;
(2)当点A在平面PBD内的射影G恰好是△PBD的重心时,求二面角B-PD-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥P-ABCD中,ABCD是正方形,PD⊥平面ABCD,PD=AB=2,E,F,G分别 是PC,PD,BC的中点.
(Ⅰ)求证:平面PAB∥平面EFG
(Ⅱ)求二面角P-AB-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若圆C:x2+(y+1)2=4,点$A(-\sqrt{5},-1)$和点$B(3\sqrt{5},a)$,从点A观察点B,要使视线不被圆C挡住,则实数a的取值范围是a>8$\sqrt{5}$-1或a<-8$\sqrt{5}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=x2-2ax+5(a>1),g(x)=log3x,若函数f(x)的定义域与值域都是[1,a],则对于任意的x1,x2∈[1,a+1]时,总有$|{f({x_1})-g({x_2})}|≤{t^2}+2t-1$恒成立,则t的取值范围为(  )
A.[1,3]B.[-1,3]C.[1,+∞)∪(-∞,-3]D.[3,+∞)∪(-∞,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知圆C:x2+y2+2x-3=0,直线l:x+ay+2-a=0(a∈R),则(  )
A.l与C相离B.l与C相切
C.l与C相交D.以上三个选项均有可能

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.执行如图所示的程序框图,则输出s的值为(  )
A.$\frac{3}{2}$B.$\frac{7}{4}$C.$\frac{23}{12}$D.$\frac{49}{24}$

查看答案和解析>>

同步练习册答案