分析 (Ⅰ)推导出EF∥CD,EF∥AB,从而EF∥平面ABP,同理EG∥平面ABP,由此能证明平面PAB∥平面EFG.
(Ⅱ)推导出PD⊥AB,AB⊥PA,则∠PAD是二面角P-AB-C的平面角,由此能法出二面角P-AB-C的大小.
解答 (本题满分10分)
证明:(Ⅰ)∵在△PDC中,E,F分别是PC,PD的中点,
∴EF∥CD,
∵AB∥CD,∴EF∥AB,
∵EF?平面ABP,且AB?平面ABP,
∴EF∥平面ABP,…(2分)
同理EG∥平面ABP,…(4分)
又∵EF∩EG=E,∴平面PAB∥平面EFG.…(5分)
解:(Ⅱ)∵PD⊥平面ABCD,
∴PD⊥AB,
又∵AB⊥AD,∴AB⊥平面PAD,∴AB⊥PA,
∴∠PAD是二面角P-AB-C的平面角…(7分)
在RT△ADP中,$tan∠PAD=\frac{PD}{AD}=\frac{PD}{AB}=1$,
∵∠PAD∈[0,π)∴$∠PAD=\frac{π}{4}$…(9分)
∴二面角P-AB-C的大小为$\frac{π}{4}$…(10分)
点评 本题考查面面平行的证明,考查二面角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\sqrt{5}$ | C. | 2$\sqrt{5}$ | D. | $\frac{{\sqrt{5}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0<e≤$\frac{\sqrt{3}}{2}$ | B. | $\frac{1}{2}$≤e<1 | C. | $\frac{\sqrt{3}}{2}$<e<1 | D. | $\frac{\sqrt{3}}{2}$≤e<1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com