精英家教网 > 高中数学 > 题目详情
6.如图,在四棱锥P-ABCD中,ABCD是正方形,PD⊥平面ABCD,PD=AB=2,E,F,G分别 是PC,PD,BC的中点.
(Ⅰ)求证:平面PAB∥平面EFG
(Ⅱ)求二面角P-AB-C的大小.

分析 (Ⅰ)推导出EF∥CD,EF∥AB,从而EF∥平面ABP,同理EG∥平面ABP,由此能证明平面PAB∥平面EFG.
(Ⅱ)推导出PD⊥AB,AB⊥PA,则∠PAD是二面角P-AB-C的平面角,由此能法出二面角P-AB-C的大小.

解答 (本题满分10分)
证明:(Ⅰ)∵在△PDC中,E,F分别是PC,PD的中点,
∴EF∥CD,
∵AB∥CD,∴EF∥AB,
∵EF?平面ABP,且AB?平面ABP,
∴EF∥平面ABP,…(2分)
同理EG∥平面ABP,…(4分)
又∵EF∩EG=E,∴平面PAB∥平面EFG.…(5分)
解:(Ⅱ)∵PD⊥平面ABCD,
∴PD⊥AB,
又∵AB⊥AD,∴AB⊥平面PAD,∴AB⊥PA,
∴∠PAD是二面角P-AB-C的平面角…(7分)
在RT△ADP中,$tan∠PAD=\frac{PD}{AD}=\frac{PD}{AB}=1$,
∵∠PAD∈[0,π)∴$∠PAD=\frac{π}{4}$…(9分)
∴二面角P-AB-C的大小为$\frac{π}{4}$…(10分)

点评 本题考查面面平行的证明,考查二面角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.从一批含有6件正品,3件次品的产品中,有放回地抽取2次,每次抽取1件,设抽得次品数为X,则D(X)=$\frac{4}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知圆O:x2+y2=1,圆O关于直线x+y+2=0对称的圆C.
(1)求圆C的方程;
(2)在直线l:2x+y-3=0上是否存在点P,过点P分别作圆O,圆C的两条切线PA,PB分别为A,B,有PA=PB?若存在,求出点P的坐标,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1(-1,0),F2(1,0),上、下顶点分别为B1、B2,右准线l:x=4.
(1)求椭圆的方程;
(2)连接B1F2并延长交椭圆于点M,连接B2M并延长交右准线于点N,求点N的坐标;
(3)是否存在非零常数λ,μ,使得对椭圆上任一点Q,总有$\overrightarrow{AQ}$=λ$\overrightarrow{QB}$且AB=μ(其中点A在x轴上,点B在y轴上),若存在,求出常数λ,μ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=lnx-a(x-1),g(x)=ex,其中e为自然对数的底数.
(Ⅰ)设$t(x)=\frac{1}{x}g(x),x∈(0,+∞)$,求函数t(x)在[m,m+1](m>0)上的最小值;
(Ⅱ)过原点分别作曲线y=f(x)与y=g(x)的切线l1,l2,已知两切线的斜率互为倒数,
求证:a=0或$\frac{e-1}{e}<a<\frac{{{e^2}-1}}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在圆C:(x+1)2+y2=16内有一点A(1,0),Q为圆C上一点,AQ的垂直平分线与C、Q的连线交于点M.
(1)求点M的轨迹方程;
(2)在x轴上是否存在一定点N(t,0),使得点M与点N的距离和它到直线l:x=4的距离的比是常数λ?若存在,求出点N及λ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某三棱锥的三视图如图所示,其中左视图中虚线平分底边,则该三棱锥的所有面中最大面的面积是(  )
A.2B.$\sqrt{5}$C.2$\sqrt{5}$D.$\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图①,在直角梯形ABCD中,AD∥BC,∠BAD=$\frac{π}{2}$,AB=BC=$\sqrt{2}$,AD=2$\sqrt{2}$,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到△A1BE的位置,如图②.
(1)证明:CD⊥平面A1OC;
(2)若平面A1BE⊥平面BCDE,求平面A1BC与平面A1CD夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)和圆x2+y2=b2,若椭圆C上存在点P,使得过点P引圆O的两条切线,切点分别为A、B,满足∠APB=60°,则椭圆的离心率e的取值范围是(  )
A.0<e≤$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$≤e<1C.$\frac{\sqrt{3}}{2}$<e<1D.$\frac{\sqrt{3}}{2}$≤e<1

查看答案和解析>>

同步练习册答案