分析 (1)推导出BE⊥OA1,BE⊥OC,从而BE⊥平面A1OC,由CD∥BE,能证明CD⊥平面A1OC.
(2)以O为原点,OB为x轴,OC为y轴,OA1为z轴,建立空间直角坐标系,利用向量法能求出二面角B-A1C-D的余弦值.
解答 证明:(1)在图1中,![]()
∵AB=BC=$\sqrt{2}$,AD=2$\sqrt{2}$,E是AD的中点,∠BAD=$\frac{π}{2}$,
∴BE⊥AC,
∴在图2中,BE⊥OA1,BE⊥OC,
∴BE⊥平面A1OC,
又CD∥BE,
∴CD⊥平面A1OC.
解:(2)∵平面A1BE⊥平面BCDE,
∴AO⊥平面BCDE,
以O为原点,OB为x轴,OC为y轴,OA1为z轴,建立空间直角坐标系,
B(1,0,0),A1(0,0,1),E(-1,0,0),C(0,1,0),D(-2,1,0),
$\overrightarrow{BC}$=(-1,1,0),$\overrightarrow{{A}_{1}C}$=(0,1,-1),$\overrightarrow{DC}$=(2,0,0),
设平面A1BC的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}\overrightarrow{n}•\overrightarrow{BC}=0\\ \overrightarrow{n}•\overrightarrow{{AC}_{1}}=0\end{array}\right.$,即$\left\{\begin{array}{l}-x+y=0\\ y-z=0\end{array}\right.$,
取x=1,得 $\overrightarrow{n}$=(1,1,1),
同理可求得平面A1CD的法向量$\overrightarrow{m}$=(0,1,1),
设平面A1BC与平面A1CD夹角为θ,
则cosθ=$\frac{2}{\sqrt{3}×\sqrt{2}}$=$\frac{\sqrt{6}}{3}$.
∴平面A1BC与平面A1CD夹角的余弦值为$\frac{\sqrt{6}}{3}$.
点评 本题考查线面垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [1,3] | B. | [-1,3] | C. | [1,+∞)∪(-∞,-3] | D. | [3,+∞)∪(-∞,-1] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | l与C相离 | B. | l与C相切 | ||
| C. | l与C相交 | D. | 以上三个选项均有可能 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com