精英家教网 > 高中数学 > 题目详情
5.过椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右焦点F2的直线与圆x2+y2=b2相切于点A,并与椭圆C交于不同的两点P,Q,若$\overrightarrow{PA}$=$\frac{1}{3}\overrightarrow{PQ}$,则椭圆离心率e=$\frac{\sqrt{5}}{3}$.

分析 连接OA,PF1,则OA⊥PQ,得PF1⊥PQ,由A为线段PQ的靠近P的三等分点,得A为线段PA的中点,于是PF1=2b.结合椭圆的定义有PF2=2a-2b,由此能求出椭圆的离心率.

解答 解:如图,

解:连接OA,PF1
则OA⊥PQ,∴PF1⊥PQ,
∵$\overrightarrow{PA}$=$\frac{1}{3}\overrightarrow{PQ}$,∴A为线段PQ的靠近P的三等分点,则A为线段PF2的中点,
于是PF1=2b.
结合椭圆的定义有PF2=2a-2b,
在直角三角形PF1F2中,
利用勾股定理得(2a-2b)2+(2b)2=(2c)2
将c2=a2-b2代入,
整理可得b=$\frac{2}{3}$a,
于是e=$\frac{c}{a}$=$\frac{\sqrt{{a}^{2}-{b}^{2}}}{a}$=$\frac{\sqrt{{a}^{2}-\frac{4}{9}{a}^{2}}}{a}$=$\frac{\sqrt{5}}{3}$.
故答案为:$\frac{\sqrt{5}}{3}$.

点评 本题考查椭圆的简单性质,考查了直线与椭圆位置关系的应用,考查了数学转化思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.如图①,在直角梯形ABCD中,AD∥BC,∠BAD=$\frac{π}{2}$,AB=BC=$\sqrt{2}$,AD=2$\sqrt{2}$,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到△A1BE的位置,如图②.
(1)证明:CD⊥平面A1OC;
(2)若平面A1BE⊥平面BCDE,求平面A1BC与平面A1CD夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)和圆x2+y2=b2,若椭圆C上存在点P,使得过点P引圆O的两条切线,切点分别为A、B,满足∠APB=60°,则椭圆的离心率e的取值范围是(  )
A.0<e≤$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$≤e<1C.$\frac{\sqrt{3}}{2}$<e<1D.$\frac{\sqrt{3}}{2}$≤e<1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.执行如图的程序框图,如果输入的n是3,那么输出的p是(  )
A.$\frac{1}{2}$B.$\frac{1}{6}$C.$\frac{1}{24}$D.$\frac{1}{120}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.将f(x)=$|\begin{array}{l}\sqrt{3}\;\;sinx\\ 1\;\;\;\;\;cosx\end{array}|$的图象按$\overrightarrow n$=(-a,0)(a>0)平移,所得图象对应的函数为偶函数,则a的最小值为$\frac{5π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设f(x)=(x+10)6,求fm(2)、f(6)(2)、及f(20)(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)是定义在R上的偶函数,且x≤0时,f(x)=log2(-x+1)
(1)求f(0),f(1)的值;
(2)求函数f(x)的解析式;
(3)若f(a-1)>1,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列各组函数是同一函数的是(  )
A.y=$\frac{2x}{x}$与y=2B.y=$\sqrt{{x}^{2}}$与y=($\sqrt{x}$)2C.y=lgx2与y=2lgxD.y=$\frac{{x}^{2}}{x}$与y=x(x≠0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某大型商场成立十周年之际,为了回馈顾客,特进行有奖销售:有奖销售期间,每购买满100元该商场的商品,都有一次抽奖机会,一旦中奖,将获得一个精美奖品;抽奖方案有A、B两种,可自主选择,A方案是:从装有3个红色小球和7个白色小球的箱子里每次摸1个小球,不放回地摸3次,若至少摸到两个红球就中奖,否则无奖;B方案是:从装有3个红色小球和7个白色小球的箱子里每次摸1个小球,有放回地摸3次,若至少有两次摸到红球就中奖,否则无奖;其中箱子里的小球除颜色和编号外完全相同.
(Ⅰ)若某顾客用A方案抽奖一次,求他抽到的3个小球中红球个数X的分布列和期望;
(Ⅱ)若甲、乙两顾客分别用A、B方案各抽奖一次,它们中奖的概率是否相同?若你去抽奖,将选择哪种方案?说明理由.

查看答案和解析>>

同步练习册答案