精英家教网 > 高中数学 > 题目详情
7.已知直线l的参数方程为:$\left\{{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$(t为参数),曲线C1的极坐标方程为:ρ=1.
(1)写出曲线C1的直角坐标方程及其参数方程;
(2)若把曲线C1上各点的横坐标压缩为原来的$\frac{1}{2}$倍,纵坐标压缩为原来的$\frac{{\sqrt{3}}}{2}$倍,得到曲线C2,设点P是曲线C2上的一个动点,求它到直线l的距离的最小值.

分析 (1)利用极坐标与直角坐标互化的方法,可得曲线C1的直角坐标方程,从而可得参数方程;
(2)点P的坐标是$(\frac{1}{2}cosθ,\frac{{\sqrt{3}}}{2}sinθ)$,从而点P 到直线?的距离是$d=\frac{{|\frac{{\sqrt{3}}}{2}cosθ-\frac{{\sqrt{3}}}{2}sinθ-\sqrt{3}|}}{2}=\frac{{\sqrt{3}}}{4}[\sqrt{2}sin(θ-\frac{π}{4})+2]$,即可求它到直线l的距离的最小值.

解答 解:(1)C1的普通方程为:x2+y2=1.
C1的参数方程为:$\left\{{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}}\right.$(θ为参数).
(2)C2的参数方程为$\left\{{\begin{array}{l}{x=\frac{1}{2}cosθ}\\{y=\frac{{\sqrt{3}}}{2}sinθ}\end{array}}\right.$(θ为参数).故点P的坐标是$(\frac{1}{2}cosθ,\frac{{\sqrt{3}}}{2}sinθ)$,
从而点P 到直线?的距离是$d=\frac{{|\frac{{\sqrt{3}}}{2}cosθ-\frac{{\sqrt{3}}}{2}sinθ-\sqrt{3}|}}{2}=\frac{{\sqrt{3}}}{4}[\sqrt{2}sin(θ-\frac{π}{4})+2]$
由此当$sin(θ-\frac{π}{4})=-1$时,d取得最小值,且最小值为$\frac{{\sqrt{6}}}{4}(\sqrt{2}-1)$.

点评 本题考查极坐标与直角坐标互化,考查参数方程的运用,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知圆O:x2+y2=1,圆O关于直线x+y+2=0对称的圆C.
(1)求圆C的方程;
(2)在直线l:2x+y-3=0上是否存在点P,过点P分别作圆O,圆C的两条切线PA,PB分别为A,B,有PA=PB?若存在,求出点P的坐标,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某三棱锥的三视图如图所示,其中左视图中虚线平分底边,则该三棱锥的所有面中最大面的面积是(  )
A.2B.$\sqrt{5}$C.2$\sqrt{5}$D.$\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图①,在直角梯形ABCD中,AD∥BC,∠BAD=$\frac{π}{2}$,AB=BC=$\sqrt{2}$,AD=2$\sqrt{2}$,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到△A1BE的位置,如图②.
(1)证明:CD⊥平面A1OC;
(2)若平面A1BE⊥平面BCDE,求平面A1BC与平面A1CD夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.f(x)=$\left\{{\begin{array}{l}{\frac{1}{x}+alnx,(x>0,0<a<e)}\\{cosx,(x≤0)}\end{array}}$,则y=f[f(x)]的零点有(  )
A.0个B.1个C.2个D.无穷多个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知抛物线y2=4x的准线与双曲线4x2-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)交于A、B两点,点F为抛物线的焦点,若△FAB为直角三角形,则双曲线离心率为(  )
A.$\frac{\sqrt{17}}{2}$B.$\frac{\sqrt{15}}{3}$C.$\frac{\sqrt{57}}{3}$D.$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设实数x,y满足$\left\{\begin{array}{l}2x-y≥0\\ x+y-3≥0\\ y-x≥0\end{array}\right.$,则z=2x+y的最小值为(  )
A.$\frac{9}{2}$B.4C.3D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)和圆x2+y2=b2,若椭圆C上存在点P,使得过点P引圆O的两条切线,切点分别为A、B,满足∠APB=60°,则椭圆的离心率e的取值范围是(  )
A.0<e≤$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$≤e<1C.$\frac{\sqrt{3}}{2}$<e<1D.$\frac{\sqrt{3}}{2}$≤e<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)是定义在R上的偶函数,且x≤0时,f(x)=log2(-x+1)
(1)求f(0),f(1)的值;
(2)求函数f(x)的解析式;
(3)若f(a-1)>1,求实数a的取值范围.

查看答案和解析>>

同步练习册答案