精英家教网 > 高中数学 > 题目详情
19.设实数x,y满足$\left\{\begin{array}{l}2x-y≥0\\ x+y-3≥0\\ y-x≥0\end{array}\right.$,则z=2x+y的最小值为(  )
A.$\frac{9}{2}$B.4C.3D.0

分析 由题意作出其平面区域,将z=2x+y化为y=-2x+z,z相当于直线y=-2x+z的纵截距,由几何意义可得.

解答 解:由题意作出$\left\{\begin{array}{l}2x-y≥0\\ x+y-3≥0\\ y-x≥0\end{array}\right.$的平面区域,

将z=2x+y化为y=-2x+z,z相当于直线y=-2x+z的纵截距,
由$\left\{\begin{array}{l}{x+y=3}\\{y-x=0}\end{array}\right.$,可得$\left\{\begin{array}{l}{x=\frac{3}{2}}\\{y=\frac{3}{2}}\end{array}\right.$,即A($\frac{3}{2}$,$\frac{3}{2}$).
当直线y=-2x+z经过A时,z有最大值,此时z的最大值2×$\frac{3}{2}$+$\frac{3}{2}$=$\frac{9}{2}$;
故选:A.

点评 本题考查了简单线性规划,作图要细致认真,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=\frac{mx}{{{x^2}+n}}(m,n∈R)$在x=1处取得极值2.
(1)求f(x)的解析式;
(2)当x>0时,求f(x)的最大值?
(3)设函数g(x)=x2-2ax+a,若对于任意x1∈R,总存在x2∈[-1,0],使得g(x2)≤f(x1),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,动圆C过点F(1,0),且与直线x=-1相切于点P.
(Ⅰ)求圆心C的轨迹Γ的方程;
(Ⅱ)过点F任作一直线交轨迹Γ于A,B两点,设PA,PF,PB的斜率分别为k1,k2,k3,问:$\frac{{{k_1}+{k_3}}}{k_2}$是否为定值?若是,求出此定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知直线l的参数方程为:$\left\{{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$(t为参数),曲线C1的极坐标方程为:ρ=1.
(1)写出曲线C1的直角坐标方程及其参数方程;
(2)若把曲线C1上各点的横坐标压缩为原来的$\frac{1}{2}$倍,纵坐标压缩为原来的$\frac{{\sqrt{3}}}{2}$倍,得到曲线C2,设点P是曲线C2上的一个动点,求它到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=2x3+1的图象与函数y=3x2-b的图象有三个不相同的交点,则实数b的取值范围是(  )
A.(0,2)B.(-2,0)C.(0,4)D.(-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图,矩形ABCD的边AB在x轴上,顶点C,D在函数y=x+$\frac{1}{x}({x>0})$的图象上.记AB=m,BC=n,则$\frac{m}{n^2}$的最大值为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在六棱锥P-ABCDEF中,底面是边长为$\sqrt{2}$的正六边形,PA=2且与底面垂直,则该六棱锥外接球的体积等于4$\sqrt{3}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.圆心在x轴的正半轴上,半径为双曲线$\frac{x^2}{16}$-$\frac{y^2}{9}$=1的虚半轴长,且与该双曲线的渐近线相切的圆的方程是(x-5)2+y2=9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=$\left\{\begin{array}{l}{2^{-x}}-1,x≤0\\{x^{\frac{1}{2}}},x>0\end{array}$满足f(x)=1的x值为(  )
A.1B.-1C.1或-2D.1或-1

查看答案和解析>>

同步练习册答案