分析 求出六棱锥外接球的半径,然后求解该六棱锥外接球的体积.
解答 解:六棱锥P-ABCDEF中,底面是边长为$\sqrt{2}$的正六边形,PA=2且与底面垂直,
可得PD是该六棱锥外接球的直径,底面是边长为$\sqrt{2}$的正六边形的对角线差为:2$\sqrt{2}$,
可得PD=$\sqrt{{2}^{2}+(2\sqrt{2})^{2}}$=$\sqrt{12}$=2$\sqrt{3}$,
外接球的半径为:$\sqrt{3}$,
外接球的体积为:$\frac{4}{3}π{r}^{3}$=$\frac{4}{3}×π×(\sqrt{3})^{3}$=4$\sqrt{3}π$.
故答案为:4$\sqrt{3}$π
点评 本题考查几何体的外接球的体积的求法,考查转化思想以及计算能力,空间想象能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0个 | B. | 1个 | C. | 2个 | D. | 无穷多个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{9}{2}$ | B. | 4 | C. | 3 | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0<e≤$\frac{\sqrt{3}}{2}$ | B. | $\frac{1}{2}$≤e<1 | C. | $\frac{\sqrt{3}}{2}$<e<1 | D. | $\frac{\sqrt{3}}{2}$≤e<1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com