精英家教网 > 高中数学 > 题目详情
14.函数y=2x3+1的图象与函数y=3x2-b的图象有三个不相同的交点,则实数b的取值范围是(  )
A.(0,2)B.(-2,0)C.(0,4)D.(-1,0)

分析 设y=f(x)=2x3+1,y=g(x)=3x2-b,根据题意得方程f(x)=g(x)有三个不相等的实数根,进而转化为b=-2x3+3x2-1,对右边对应的函数单调性的讨论,记F(x)=-2x3+3x2-1然后利用导数工具研究其单调性,得到它的极大值与极小值,最后根据这个极值建立关于字母b的不等式组,解之可得实数b的取值范围.

解答 解:设y=f(x)=2x3+1,y=g(x)=3x2-b
∵y=2x3+1的图象与y=3x2-b的图象有三个不相同的交点,
∴方程f(x)=g(x)有三个不相等的实数根
即:2x3+1=3x2-b⇒b=-2x3+3x2-1
记F(x)=-2x3+3x2-1,得F′(x)=-6x(x-1),
∴F(x)在(0,1)递增,在(1,+∞),(-∞,0)上递减,F(0)取极小,F(1)取极大.
所以方程f(x)=g(x)有三个不相等的实数根的充要条件是:
函数F(x)的极大值大于b,而极小值小于b
∴$\left\{\begin{array}{l}{F(0)=-1>b}\\{F(1)=0<b}\end{array}\right.$⇒b∈(-1,0)
故选:D.

点评 本题以多项式函数为载体,考查了方程根的个数知识点,属于中档题.从函数图象联系到方程的根,利用参数分离研究函数单调性的方法解决,是本题解决的特征.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图,斜三棱柱ABC-A1B1C1的所有棱长均为a,M是BC的中点,侧面B1C1CB⊥底面ABC,且AC1⊥BC.
(Ⅰ)求证:BC⊥C1M;
(Ⅱ)求二面角A1-AB-C的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,点F是抛物线C:x2=2y的焦点,点P(x1,y1)为抛物线上的动点(P在第一象限),直线PF交抛物线C于另一点Q,直线l与抛物线C相切于点P.过点P作直线l的垂线交抛物线C于点R.
(1)求直线l的方程(用x1表示);
(2)求△PQR面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.f(x)=$\left\{{\begin{array}{l}{\frac{1}{x}+alnx,(x>0,0<a<e)}\\{cosx,(x≤0)}\end{array}}$,则y=f[f(x)]的零点有(  )
A.0个B.1个C.2个D.无穷多个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知等比数列{an}满足:a1=$\frac{1}{2}$,a1,a2,a3-$\frac{1}{8}$成等差数列,公比q∈(0,1)
(1)求数列{an}的通项公式;
(2)设bn=2nan,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设实数x,y满足$\left\{\begin{array}{l}2x-y≥0\\ x+y-3≥0\\ y-x≥0\end{array}\right.$,则z=2x+y的最小值为(  )
A.$\frac{9}{2}$B.4C.3D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知数列{an}的前n项和Sn=$\frac{3}{2}$n2-$\frac{n}{2}$,bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,Tn为{bn}的前n项和,若对任意的n∈N,不等式λTn<n+12(-1)n恒成立,则实数λ的取值范围为(-∞,-44).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设$\overrightarrow a$=(1,2),$\overrightarrow b$=(1,1),$\overrightarrow c$=$\overrightarrow a$+k$\overrightarrow b$.若$\overrightarrow b$⊥$\overrightarrow c$,则实数k的值等于$-\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若f(x)是偶函数,且当x∈[0,+∞)时,f(x)=x-1,则f(x)<0的解集是(  )
A.(-1,0)B.(-∞,-1)∪(0,1)C.(-1,1)D.(0,1)

查看答案和解析>>

同步练习册答案