精英家教网 > 高中数学 > 题目详情
9.已知函数$f(x)=\frac{mx}{{{x^2}+n}}(m,n∈R)$在x=1处取得极值2.
(1)求f(x)的解析式;
(2)当x>0时,求f(x)的最大值?
(3)设函数g(x)=x2-2ax+a,若对于任意x1∈R,总存在x2∈[-1,0],使得g(x2)≤f(x1),求实数a的取值范围.

分析 (1)先求出函数f(x)的导数,得到方程组,求出a,b的值,从而求出函数的解析式;
(2)根据基本不等式即可求出函数的最大值,
(3)求f′(x),令f′(x)>0,令f′(x)<0得函数f(x)的极小值,且当x>1时,f(x)>0恒成立,得函数f(x)的最小值,利用二次函数的图象,对a进行分类讨论,得出g(x)在[-1,0]上的最大值,由g(x)在[-1,0]上的最大值小于等于-2得a的范围,结合分类时a的范围得a的取值范围.

解答 解:(1)f′(x)=$\frac{-m{x}^{2}+mn}{({x}^{2}+n)^{2}}$,
根据题意得$\left\{\begin{array}{l}{f′(1)=\frac{-m+mn}{(1+n)^{2}}=0}\\{f(1)=\frac{m}{1+n}=2}\end{array}\right.$,解得m=4,n=1,
∴f(x)=$\frac{4x}{{x}^{2}+1}$
(2)$f(x)=\frac{4x}{{{x^2}+1}}=\frac{4}{{x+\frac{1}{x}}}$,
∵x>0时,$x+\frac{1}{x}≥2$当且仅当x=1时取等号
∴f(x)的最大值为f(1)=2.
(3)f′(x)=$\frac{-4({x}^{2}-1)}{({x}^{2}+1)^{2}}$,令f'(x)=0,得x=-1或x=1
当x变化时,f'(x),f(x)的变化情况如下表:

x(-∞,-1)-1(-1,1)1(1,+∞)
f'(x)-0+0-
f(x)单调递减极小值单调递增极大值单调递减
∴f(x)在x=-1处取得极小值f(-1)=-2,在x=1处取得极大值f(1)=2
又∵x>0时,f(x)>0,
∴f(x)的最小值为-2,
∵对于任意的x1∈R,总存在x2∈[-1,0],使得g(x2)≤f(x1),
∴当x∈[-1,0]时,g(x)最小值不大于-2
又g(x)=x2-2ax+a=(x-a)2+a-a2
当a≤-1时,g(x)的最小值为g(-1)=1+3a,由1+3a≤-2
得a≤-1,
当a≥0时,g(x)最小值为g(0)=a,由a≤-2,此时不存在,
当-1<a<0时,g(x)的最小值为g(a)=a-a2
由a-a2≤-2,得a≤-1或a≥2,又-1<a<1,此时时a不存在.
综上,a的取值范围是(-∞,-1].

点评 本题考查了函数的求导及极值以及函数的最值和参数的取值范围,考查了分类讨论思想,转化思想,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.在直角坐标系xoy中以O为极点,x轴正半轴为极轴建立坐标系.曲线C1的极坐标方程和曲线C2的参数方程分别为ρ=4sinθ,$\left\{\begin{array}{l}{x=-1-2t}\\{y=5+2t}\end{array}\right.$(t为参数).
(1)求曲线C1的直角坐标方程与曲线C2的普通方程,并指出是什么曲线;
(2)求曲线C1与C2交点的极坐标(ρ≥0,0≤θ<2π).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知点A(-1,0),B(1,0),△ABC的周长为6.
(Ⅰ)求动点C的轨迹E的方程;
(Ⅱ)设过点B(1,0)的直线l与曲线E相交于不同的两点M,N.若点P在y轴上,且|PM|=|PN|,求点P的纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知圆O:x2+y2=1,圆O关于直线x+y+2=0对称的圆C.
(1)求圆C的方程;
(2)在直线l:2x+y-3=0上是否存在点P,过点P分别作圆O,圆C的两条切线PA,PB分别为A,B,有PA=PB?若存在,求出点P的坐标,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,斜三棱柱ABC-A1B1C1的所有棱长均为a,M是BC的中点,侧面B1C1CB⊥底面ABC,且AC1⊥BC.
(Ⅰ)求证:BC⊥C1M;
(Ⅱ)求二面角A1-AB-C的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1(-1,0),F2(1,0),上、下顶点分别为B1、B2,右准线l:x=4.
(1)求椭圆的方程;
(2)连接B1F2并延长交椭圆于点M,连接B2M并延长交右准线于点N,求点N的坐标;
(3)是否存在非零常数λ,μ,使得对椭圆上任一点Q,总有$\overrightarrow{AQ}$=λ$\overrightarrow{QB}$且AB=μ(其中点A在x轴上,点B在y轴上),若存在,求出常数λ,μ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=lnx-a(x-1),g(x)=ex,其中e为自然对数的底数.
(Ⅰ)设$t(x)=\frac{1}{x}g(x),x∈(0,+∞)$,求函数t(x)在[m,m+1](m>0)上的最小值;
(Ⅱ)过原点分别作曲线y=f(x)与y=g(x)的切线l1,l2,已知两切线的斜率互为倒数,
求证:a=0或$\frac{e-1}{e}<a<\frac{{{e^2}-1}}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某三棱锥的三视图如图所示,其中左视图中虚线平分底边,则该三棱锥的所有面中最大面的面积是(  )
A.2B.$\sqrt{5}$C.2$\sqrt{5}$D.$\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设实数x,y满足$\left\{\begin{array}{l}2x-y≥0\\ x+y-3≥0\\ y-x≥0\end{array}\right.$,则z=2x+y的最小值为(  )
A.$\frac{9}{2}$B.4C.3D.0

查看答案和解析>>

同步练习册答案