精英家教网 > 高中数学 > 题目详情
5.若logm0.3>0,则实数m的取值范围是(0,1).

分析 由logm0.3>0=logm1,结合对数函数的单调性可得0<m<1.

解答 解:∵logm0.3>0=logm1,
∴0<m<1.
即实数m的取值范围是(0,1).
故答案为:(0,1).

点评 本题考查对数不等式的解法,考查对数函数的单调性,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.设α为锐角,已知sinα=$\frac{3}{5}$.
(1)求cosα的值;
(2)求cos(α+$\frac{π}{6}}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知$\overrightarrow{e}$1,$\overrightarrow{e}$2为不共线的单位向量,设|$\overrightarrow{a}$|=$\frac{{\sqrt{3}}}{4}$,$\overrightarrow{b}$=$\overrightarrow{e}$1+k$\overrightarrow{e}$2(k∈R),若对任意的向量$\overrightarrow{a}$,$\overrightarrow{b}$均有|$\overrightarrow{a}$-$\overrightarrow{b}$|≥$\frac{{\sqrt{3}}}{4}$成立,则向量$\overrightarrow{e}$1,$\overrightarrow{e}$2夹角的最大值是(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{3π}{4}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某同学在一次研究性学习中发现,以下四个式子的值都等于同一个常数.
①sin210°+cos240°+sin10°cos40°
②sin220°+cos250°+sin20°cos50°
③sin240°+cos270°+sin40°cos70°
④sin2(-15°)+cos215°+sin(-15°)cos15°
(1)试从上述四个式子中选择一个,求出这个常数.
(2)根据(1)的计算结果,将该同学的发现推广成三角恒等式,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.△ABC中,已知sinB=1,b=3,则此三角形(  )
A.无解B.只有一解C.有两解D.解的个数不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如果{x|x∈R且2x2+x-3<a}是非空集,那么实数a的取值范围是(  )
A.(0,+∞)B.[0,+∞)C.(-3$\frac{1}{8}$,+∞)D.(-∞,-3$\frac{1}{8}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设f(x)=$\left\{\begin{array}{l}{1{0}^{x},x≤0}\\{lo{g}_{5}x,x>0}\end{array}\right.$,则f(-f(2))=${2}^{lo{g}_{5}\frac{1}{2}}×\frac{1}{2}$;.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设集合M={x|(x+2)(x-3)<0},N={x|y=log2(x-1)},则M∩N等于(  )
A.(1,2)B.(-1,2)C.(1,3)D.(-1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设复数z满足$\frac{{1-\sqrt{3}z}}{{1+\sqrt{3}z}}=i$,则|z|=(  )
A.$\sqrt{3}$B.$\sqrt{6}$C.$\frac{{2\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

同步练习册答案