精英家教网 > 高中数学 > 题目详情
12.设f(x)、g(x)分别是定义在R上的奇函数和偶函数,令h(x)=f(x)•g(x),且对任意x1,x2∈(0,+∞),都有$\frac{h({x}_{1})-h({x}_{2})}{{x}_{1}-{x}_{2}}$<0,g(1)=0,则不等式x•h(x)<0的解集为(-∞,-1)∪(1,+∞).

分析 根据题意和奇函数的定义判断出h(x)的奇偶性,由函数单调性的定义判断出h(x)的单调性,结合条件画出函数图象的示意图,由图象求出不等式的解集.

解答 解:∵f(x)、g(x)分别是定义在R上的奇函数和偶函数,
∴h(x)=f(x)g(x)是R上的奇函数,
∵任意x1,x2∈(0,+∞),都有$\frac{h({x}_{1})-h({x}_{2})}{{x}_{1}-{x}_{2}}$<0,
∴h(x)在(0,+∞)上为减函数,
则h(x)在(-∞,0)上也为减函数,
又g(1)=0,∴h(1)=f(1)g(1)=0,且h(-1)=0,
画出函数h(x)的图象示意图:
∴不等式x•h(x)<0的解集是(-∞,-1)∪(1,+∞),
故答案为:(-∞,-1)∪(1,+∞).

点评 本题考查函数的奇偶性与单调性的综合应用,考查数形结合思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知sinα+sinβ=$\frac{1}{3}$,求y=sinα-cos2β+1的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x3-ax+b,x∈R,若函数f(x)在点(1,f(1))处的切线方程是2x-y+3=0,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知数列{an}中,a1=2,前n项和为Sn,且点P(an,an+1)(n∈N*)在一次函数上y=x+2的图象上,则$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+$\frac{1}{{S}_{3}}$+…+$\frac{1}{{S}_{n}}$=(  )
A.$\frac{n(n+1)}{2}$B.$\frac{2n}{n+1}$C.$\frac{2}{n(n+1)}$D.$\frac{n}{n+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知{an}是公差为1的等差数列,a1,a5,a25成等比数列.
(1)求数列{an}的通项公式;
(2)设bn=3${\;}^{{a}_{n}}$+an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.同时抛掷2枚质地均匀的硬币4次,设2枚硬币正好出现1枚正面向上、1枚反面向上的次数为X,则X的数学期望是(  )
A.1B.$\frac{3}{2}$C.2D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=AA1=2,D、E分别为棱AB、BC的中点,点F在棱AA1上.
(1)证明:直线A1C1∥平面FDE;
(2)若F为棱AA1的中点,求三棱锥A1-DEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知tanα=-$\frac{5}{12}$,且α为第二象限角,则sinα的值等于$\frac{5}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某企业宣传部需要安排所有的员工分赴2个宣讲会,每个地点至少分派1名经理和4名普通员工,已知宣传部有2名经理和9名普通员工,则不同的安排共有 (  )种.
A.504B.600C.720D.1000

查看答案和解析>>

同步练习册答案