精英家教网 > 高中数学 > 题目详情
已知变量x,y满足
x-y+1≥0
x+y-4≤0
y≥1
,则xy的最大值为(  )
A、1B、2C、3D、4
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对于的平面区域,由z=xy,则y=
z
x
为双曲线,利用数形结合即可得到结论.
解答: 解:作出不等式组对应的平面区域如图:
由z=xy,则y=
z
x
为双曲线,
要使z=xy最大,则z>0,
∵z=xy对应的双曲线的对称轴为y=x,
∴由图象可知当z=xy与x+y-4=0相切时,z=xy取得最大值,
x+y-4=0
y=x

解得
x=2
y=2
,即A(2,2),
此时z=2×2=4,
故选:D.
点评:本题主要考查线性规划的应用,以及双曲线的性质,利用数形结合是解决本题的关键,本题涉及的知识点较多,综合性较强,有一定的难度.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若x>0,y>0,ln2x+ln8y=ln2,则
1
x
+
1
3y
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设定点A(3,0),动点P(x,y)的坐标满足约束条件
x≥2
y≥2
x+y≤6
,则|
OP
|cos∠AOP(O为坐标原点)的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设变量x,y满足
x+y≥1
x-y≥0
2x-y-2≥0
,则目标函数z=3x-y的最小值为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为奇函数,且当x>0时,f(x)=x2+2x,则f(-1)=(  )
A、1B、-1C、3D、-3

查看答案和解析>>

科目:高中数学 来源: 题型:

设变量x,y满足约束条件
x+2y≤2
2x+y≥4
y≥-2
,则目标函数z=-x-y的取值范围是(  )
A、[-4,0]
B、[-8,-2]
C、[-4,-2]
D、[-4,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知变量x,y满足约束条件 
y≤2
x+y≥1
x-y≤1
,则z=3x+2y的最大值为(  )
A、1B、13C、11D、-1

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个命题正确的是(  )
①函数y=x+
1
4x
(x≠0)的值域是[1,+∞);
②平面内的动点P到点F(-2,3)和到直线l:2x+y+1=0的距离相等,则P的轨迹是抛物线;
③直线AB与平面α相交于点B,且AB与α内相交于点C的三条互不重合的直线CD、CE、CF所成的角相等,则AB⊥α;
④若f(x)=x2+bx+c(b,c∈R),则f(
x1+x2
2
)≤
1
2
[f(x1)+f(x2)].
A、①③B、②④C、②③D、③④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-4ax+2a+12的值域为集合M,集合N={y|y=
x
},M∩N=M.
(1)求实数a的取值范围;
(2)求关于x的方程
x
a+2
=|a-1|+2的根的取值范围.

查看答案和解析>>

同步练习册答案