精英家教网 > 高中数学 > 题目详情
16.已知直线l1:x+ay+3=0与直线l2:x-2y+1=0垂直,则a的值为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.2D.-2

分析 当两条直线垂直时,A1A2+B1B2=0,解方程求出a的值.

解答 解:由题意得:1-2a=0,解得a=$\frac{1}{2}$,
故选:A.

点评 本题考查两直线垂直的条件,体现了转化的数学思想.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x|x-a|+2x(a∈R)
(1)当a=4时,解不等式f(x)≥8;
(2)当a∈[0,4]时,求f(x)在区间[3,4]上的最小值;
(3)若存在a∈[0,4],使得关于x的方程f(x)=tf(a)有3个不相等的实数根,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某大学在开学季准备销售一种盒饭进行试创业,在一个开学季内,每售出1盒该盒饭获利润10元,未售出的产品,每盒亏损5元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季购进了150盒该产品,以x(单位:盒,100≤x≤200)表示这个开学季内的市场需求量,y(单位:元)表示这个开学季内经销该产品的利润.
(Ⅰ)根据直方图估计这个开学季内市场需求量x的平均数和众数;
(Ⅱ)将y表示为x的函数;
(Ⅲ)根据频率分布直方图估计利润y不少于1350元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设集合A={a|0<a<1},B={a∈R|ax2+4ax-4<0对任意实数x恒成立},则下列关系成立的是(  )
A.A?BB.B?AC.A=BD.A∩B=∅

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设集合A={x|0≤x≤3},B={x|x<2},则A∪B=(  )
A.(-∞,2)B.(-∞,3]C.[0,2)D.[0,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知F1,F2是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左右焦点,过F2作双曲线一条渐近线的垂线,垂足为点A,交另一条渐近线于点B,且$\overrightarrow{A{F_2}}=\frac{1}{3}\overrightarrow{{F_2}B}$,则该双曲线的离心率为(  )
A.$\frac{{\sqrt{6}}}{2}$B.$\frac{{\sqrt{5}}}{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.方向向量为$\overrightarrow d=(1,2)$,且过点A(3,4)的直线的一般式方程为2x-y-2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.现有一只不透明的袋子里面装有6个小球,其中3个为红球,3个为黑球,这些小球除颜色外无任何差异,现从袋中一次性地随机摸出2个小球.
(1)求这两个小球都是红球的概率;
(2)记摸出的小球中红球的个数为X,求随机变量X的概率分布及其均值E(X ).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.从6名男生和4名女生中任选4人参加比赛,设被选中女生的人数为随机变量ξ,
求(Ⅰ)ξ的分布列;
(Ⅱ)所选女生不少于2人的概率.

查看答案和解析>>

同步练习册答案