精英家教网 > 高中数学 > 题目详情
已知函数f(x)=|x-a|.
(1)若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a的值;
(2)在 (1)的条件下,若存在x∈R使得f(x)+f(x+5)≤m成立,求实数m的取值范围.
考点:绝对值不等式的解法
专题:不等式的解法及应用
分析:(1)利用同一个不等式的解集是相等集合得到端点的关系求a;
(2)要使存在x∈R使得f(x)+f(x+5)≤m成立,只要求出f(x)+f(x+5)的最小值即可,构造函数g(x)=f(x)+f(x+5),借助于三角不等式的性质求g(x)的最小值.
解答: 解:(1).由f(x)≤3得|x-a|≤3,解得a-3≤x≤a+3,又已知不等式f(x)≤3的解集为{x|-1≤x≤5},所以
a-3=-1
a+3=5
,解得a=2;
(2).当a=2时f(x)=|x-2|.
设g(x)=f(x)+f(x+5)=|x-2|+|x+3|,由|x-2|+|x+3|≥5,(当且仅当-3≤x≤2时等号成立)
得,g(x)的最小值为5.从而存在x∈R,使得f(x)+f(x+5)≤m成立,即存在x∈R,使得g(x)≤m成立,所以m的取值范围为[5,+∞).
点评:本题考查了绝对值不等式的解法以及绝对值函数的值域的求法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

O为坐标原点,F为抛物线C:y2=4x的焦点,P为C上一点,若|PF|=4,则△POF的面积为(  )
A、
2
B、
3
C、2
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+(4a-1)x+3a在区间[-
1
2
,3]上的最大值为3,求实数a的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是定义在R上的单调函数,对?x∈R,f[f(x)-2x]=3恒成立,则f(3)=(  )
A、1B、3C、8D、9

查看答案和解析>>

科目:高中数学 来源: 题型:

若长方体相邻三个面的面积分别为6cm2,3cm2,2cm2,则此长方体外接球的表面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=2x2-mx+3,在(-∞,-2]上是减函数,在[-2,+∞)上是增函数,则f(1)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)在定义域R上是减函数.若f(2a)<f(a+3),则实数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x
+1
x
-1

(1)求函数f(x)的定义域;
(2)判断函数f(x)在定义域上的单调性;
(3)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设离散型随机变量X的分布列为
X012
P
1
3
1
6
1
2
则P(1≤X≤3)=
 

查看答案和解析>>

同步练习册答案