精英家教网 > 高中数学 > 题目详情
若向量
a
=(2,-1),
b
=(k,1)
,若
a
b
,则实数k的值为
 
考点:平面向量共线(平行)的坐标表示
专题:平面向量及应用
分析:利用向量共线定理即可得出.
解答: 解:∵
a
b
,∴-1×k-1×2=0,解得k=-2.
故答案为:-2.
点评:本题考查了向量共线定理,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在直角梯形ABCD中,∠A=90°,∠B=30°,AB=2
3
,BC=2,点E在线段CD上,若
AE
=
AD
AB
,则μ的取值范围是(  )
A、[0,1]
B、[0,
3
]
C、[0,
1
2
]
D、[
1
2
,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

圆x2+(y-3)2=1上的动点P到点Q(2,3)的距离的最小值为(  )
A、2B、1C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,将一块直角三角形板ABO置于平面直角坐标系中,已知AB=OB=1,AB⊥OB,点P(
1
2
1
4
)
是三角板内一点,现因三角板中阴影部分受到损坏,要把损坏部分锯掉,可用经过点P的任一直线MN将三角板锯成△AMN.设直线MN的斜率为k,问:
(1)求直线MN的方程?
(2)求点M,N的坐标,并求k范围?
(3)用区间D表示△AMN的面积的取值范围,求出区间D?若S2>m(-2S+1)对任意S∈D恒成立,求m的取值范围?

查看答案和解析>>

科目:高中数学 来源: 题型:

求满足(
1
4
)x2-8
>4-2x的x的取值集合是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

|x+2|-|x-1|<a的解集为非空集合,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线x+y+m=0与圆x2+y2=4交于不同的两点A,B,O是坐标原点,
|OA
+
OB
|≥|
AB
|
,则实数m的取值范围是(  )
A、[-2,2]
B、[2,2
2
)∪(-2
2
,-2]
C、(-2
2
,-2]
D、[2,2
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x
x+1
,若数列{an}(n∈N*)满足:a1=1,an+1=f(an).
(Ⅰ)证明数列{
1
an
}为等差数列,并求数列{an}的通项公式;
(Ⅱ)设数列{cn}满足:cn=
2n
an
,求数列{cn}的前n项的和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:△ABC中,AB=BC=4,∠ABC=30°,AD⊥BC,则
AD
AC
=
 

查看答案和解析>>

同步练习册答案