精英家教网 > 高中数学 > 题目详情
1.已知定义在R上的奇函数f(x),当x≥0时,f(x)=$\left\{\begin{array}{l}{log_2}(x+1),{\;}_{\;}x∈[0,1]\\|x-3|-1,{\;}_{\;}x∈(1,+∞)\end{array}$,则关于x的方程f(x)=a,(0<a<1)的所有根之和为(  )
A.2a-1B.2a+1C.1-2-aD.1+2-a

分析 根据已知画出函数f(x)的图象,根据函数的对称性,结合指数和对数的运算性质,可得答案.

解答 解:∵函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=$\left\{\begin{array}{l}{log_2}(x+1),{\;}_{\;}x∈[0,1]\\|x-3|-1,{\;}_{\;}x∈(1,+∞)\end{array}$,
故函数f(x)的图象如下图所示:

故关于x的方程f(x)=a,(0<a<1)共有5个根:x1,x2,x3,x4,x5
则x1+x2+x4+x5=0,x1+x2+x3+x4+x5=x3
由log2(x3+1)=a得:x3=2a-1,
故关于x的方程f(x)=a,(0<a<1)的所有根之和为2a-1,
故选:A.

点评 本题考查的知识点是根的存在性及根的个数判断,函数的图象,数形结合思想,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.“三个数a,b,c成等比数列”是“b2=ac”的充分不必要条件.(填“充分不必要、充要、必要不充分、既不充分也不必要”)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在含有2件次品的10件产品中,任取3件,求:
(1)取到的次品数X的分布列及数学期望;
(2)至少取到1件次品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{2}}}{2}$,过右焦点F且斜率为k(k>0)的直线与椭圆C相交于A,B两点,若$\overrightarrow{AF}=3\overrightarrow{FB}$,则k=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=alnx+$\frac{1-a}{2}{x}^{2}-x$,a≠1.
(1)讨论函数f(x)的单调性;
(2)若关于x的不等式f(x)<$\frac{a}{a-1}$在[1,+∞)上有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设数列{an}满足a1=1,a2=4,a3=9,an=an-1+an-2-an-3,n=4,5,…,则a2017=(  )
A.8064B.8065C.8067D.8068

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.记不等式x2+x-6<0的解集为集合A,函数y=lg(x-a)的定义域为集合B.
(1)当a=-1时,求A∩B;
(2)若“x∈A”是“x∈B”的充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知圆C与y轴相切,圆心C在直线2x-y=0上,且被直线l:x-y+4=0分成两段圆弧,其弧长的比为3﹕1.
(Ⅰ)求圆C的标准方程;
(Ⅱ)若以点D(-1,0)为圆心的圆D与圆C相交所得的弦长为$2\sqrt{3}$,求圆D的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知直线l交抛物线y2=-3x于A、B两点,且$\overrightarrow{OA}$•$\overrightarrow{OB}$=4(O是坐标原点),设l与x轴的非正半轴交于点F,F、F′分别是双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左右焦点.若在双曲线的右支上存在一点P,使得2|$\overrightarrow{PF}$|=3|$\overrightarrow{PF'}$|,则a的取值范围是[$\frac{4}{5}$,4).

查看答案和解析>>

同步练习册答案