精英家教网 > 高中数学 > 题目详情
12.在含有2件次品的10件产品中,任取3件,求:
(1)取到的次品数X的分布列及数学期望;
(2)至少取到1件次品的概率.

分析 (1)由已知得X的可能取值为0,1,2分别求出相应的概率,由此能求出X的分布列.(2)利用对立事件的概率公式能求出至少取到1件次品的概率.

解答 解:(1)由已知得X的可能取值为0,1,2,
P(X=0)=$\frac{{C}_{8}^{3}}{{C}_{10}^{3}}$=$\frac{7}{15}$,
P(X=1)=$\frac{{{C}_{8}^{2}C}_{2}^{1}}{{C}_{10}^{3}}$=$\frac{7}{15}$,
P(X=2)=$\frac{{{C}_{8}^{1}C}_{2}^{2}}{{C}_{10}^{3}}$=$\frac{1}{15}$,
∴X的分布列为:

X012
P$\frac{7}{15}$$\frac{7}{15}$$\frac{1}{15}$
(2)至少取到1件次品的概率:
P=1-P(X=0)=1-$\frac{7}{15}$=$\frac{8}{15}$.

点评 本题考查概率的求法,考查离散型随机变量的分布列的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知$a={2^{\frac{6}{5}}},b={({\frac{1}{8}})^{-\frac{4}{5}}},c=2{log_5}2$,则a,b,c的大小关系为(  )
A.c<b<aB.c<a<bC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图所示,正方体 ABCD-A1B1C1D1中,M.N分别为棱 C1D1,C1C的中点,有以下四个结论:①直线AM与C1C是相交直线;  
②直线AM与BN是平行直线;
③直线BN与MB1是异面直线;
④直线MN与AC所成的角为60°.
则其中真命题的是(  )
A.①②B.③④C.①④D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求函数f(x)=sin2x-2acosx-1的最大值g(a)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知动圆P与圆F1:(x+2)2+y2=(2$\sqrt{7}$+3)2 相内切,且与圆F2:(x-2)2+y2=9相内切,记圆心P的轨迹为曲线C;设M为曲线C上的一个不在x轴上的动点,O为坐标原点,过点F2作OM的平行线交曲线C于A,B两个不同的点.
(1)求曲线C的方程;
(2)是否存在常数λ,使得$\frac{|AB|}{|OM{|}^{2}}$=λ,若能,求出这个常数λ.若不能,说明理由;
(3)记△MF2A面积为S1,△OF2B面积为S2,令S=S1+S2,求S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.将函数y=sin(2x-$\frac{π}{3}$)的图象分别向左平移m(m>0)个单位、向右平移n(n>0)个单位,所得到的图象都与函数y=cos2x的图象重合,则m+n的最小值为π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.三棱锥V-ABC中,VA=VB=AC=BC=2,AB=2$\sqrt{3}$,VC=1,E为AB边中点.
(1)求证:AB⊥平面VEC;
(2)求出二面角V-AB-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知定义在R上的奇函数f(x),当x≥0时,f(x)=$\left\{\begin{array}{l}{log_2}(x+1),{\;}_{\;}x∈[0,1]\\|x-3|-1,{\;}_{\;}x∈(1,+∞)\end{array}$,则关于x的方程f(x)=a,(0<a<1)的所有根之和为(  )
A.2a-1B.2a+1C.1-2-aD.1+2-a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.根据下列条件,求直线方程(结果写成一般式)
(1)直线l过点(-1,2),且在x,y轴上的截距相等;
(2)直线m过点(2,1),并且到A(1,1)、B(3,5)两点的距离相等.

查看答案和解析>>

同步练习册答案