精英家教网 > 高中数学 > 题目详情
11.已知数列{an}满足an+1=$\frac{(n+2){a}_{n}^{2}-{na}_{n}+n+1}{{a}_{n}^{2}+1}$,(n∈N+),且a1=1.
(1)求a2,a3,a4的值,猜测an,并用数学归纳法证明;
(2)比较3an与(n-1)2n+2n2的大小,并给出证明过程.

分析 (1)直接由数列递推式结合a1=1求得a2,a3,a4的值,猜测an,然后利用数学归纳法证明;
(2)比较3an与(n-1)2n+2n2的大小,即比较3n与(n-1)2n+2n2的大小,通过比较n=1,2,3,4,5时,两个代数式的大小,猜想结论,利用数学归纳法证明即可.

解答 解:(1)由an+1=$\frac{(n+2){a}_{n}^{2}-{na}_{n}+n+1}{{a}_{n}^{2}+1}$,且a1=1,
得${a}_{2}=\frac{3×{1}^{2}-1×1+2}{2}=2$,
${a}_{3}=\frac{4×{2}^{2}-2×2+3}{5}=3$,
${a}_{4}=\frac{5×{3}^{2}-3×3+4}{10}=4$.
由上猜测an=n.
下面用归纳法证明:
当n=1时,a1=1,结论成立;
假设当n=k时结论成立,即ak=k,
则当n=k+1时,${a}_{k+1}=\frac{(k+2)•{{a}_{k}}^{2}-k{a}_{k}+k+1}{{{a}_{k}}^{2}+1}$=$\frac{(k+2)•{k}^{2}-{k}^{2}+k+1}{{k}^{2}+1}$
=$\frac{{k}^{3}+{k}^{2}+k+1}{{k}^{2}+1}=\frac{k({k}^{2}+1)+{k}^{2}+1}{{k}^{2}+1}=\frac{(k+1)({k}^{2}+1)}{{k}^{2}+1}=k+1$.
∴当n=k+1时,结论成立.
综上,an=n;
(2)3an =3n
当n=1时,3n>(n-1)2n+2n2
当n=2,3时,3n<(n-1)2n+2n2
当n=4,5时,3n>(n-1)2n+2n2
猜想:当n≥4时,3n>(n-1)2n+2n2
下面用数学归纳法证明:
由上述过程可知,n=4时结论成立,
假设当n=k,(k≥4)时结论成立,即3k>(k-1)2k+2k2
两边同乘以3得:3k+1>3[(k-1)2k+2k2]=k2k+1+2(k+1)2+[(k-3)2k+4k2-4k-2].
而(k-3)2k+4k2-4k-2=(k-3)2k+4(k2-k-2)+6=(k-3)2k+4(k-2)(k+1)+6>0.
∴3k+1>((k+1)-1)2k+1+2(k+1)2
即n=k+1时结论也成立,
∴当n≥4时,3n>(n-1)2n+2n2成立.

点评 本题考查数列递推式,考查了数列的函数特性,训练了利用数学归纳法证明与自然数有关的命题,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.在△ABC中,角A,B,C所对的边为a,b,c.已知2acosB=$\sqrt{3}$(bcosC+ccosB).
(Ⅰ)求B的值;
(Ⅱ)若c=$\sqrt{3}$b,△ABC的面积为2$\sqrt{3}$,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0、|φ|<$\frac{π}{2}$)的图象的一部分如图所示.
(1)求函数f(x)在[0,π]上的单凋递增区间:
(2)已知g(x)=$\left\{\begin{array}{l}{1(0<x<π)}\\{\frac{1}{2}(x=π)}\\{0(π<x<2π)}\end{array}\right.$,求函数y=f(x)与y=g(x)图象的所有交点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数y=2x-sinx($\frac{1}{3}π$≤x≤$\frac{5}{6}π$)的值域为[$\frac{2π}{3}$-$\frac{\sqrt{3}}{2}$,$\frac{5π}{3}$$-\frac{1}{2}$}..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知实数x,y满足不等式组$\left\{\begin{array}{l}{y-x≤2}\\{x+y≥4}\\{3x-y≤5}\end{array}\right.$,若目标函数z=y-mx取得最大值时有唯一的最优解(1,3),则实数m的取值范围是(  )
A.m<-1B.0<m<1C.m>1D.m≥1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.对于任意非零向量$\overrightarrow{a}$=(a1,a2,a3),$\overrightarrow{b}$=(b1,b2,b3),给出下面三个命题:
(1)$\overrightarrow{a}$∥$\overrightarrow{b}$?$\frac{{a}_{1}}{{b}_{1}}$=$\frac{{a}_{2}}{{b}_{2}}$=$\frac{{a}_{3}}{{b}_{3}}$;
(2)cos<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{{a}_{1}{b}_{1}+{a}_{2}{b}_{2}+{a}_{3}{b}_{3}}{\sqrt{{a}_{1}^{2}+{a}_{2}^{2}+{a}_{3}^{2}}•\sqrt{{b}_{1}^{2}+{b}_{2}^{2}+{b}_{3}^{2}}}$;
(3)若a1=a2=a3=1,则$\overrightarrow{a}$为单位向量.
其中正确命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若函数f(x)满足“对任意x1,x2∈R,当x1<x2时,都有f(x1)>f(x2)”,则满足f(|$\frac{1}{x}$|)<f(1)的实数x的取值范围是(  )
A.(-1,1)B.(0,1)C.(-1,0)∪(0,1)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示,已知在?ABCD中,AB=3,AD=1,∠DAB=$\frac{π}{3}$,求对角线AC和BD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知tanα=-$\frac{2}{3}$,且角α是第二象限的角,求sinα,cosα的值.

查看答案和解析>>

同步练习册答案