精英家教网 > 高中数学 > 题目详情
17.已知(1-2x)n(n∈N*)的展开式中第3项与第8项的二项式系数相等,则展开式中所有项的系数和为-1.

分析 根据(1-2x)n(n∈N*)的展开式中第3项与第8项的二项式系数相等求出n的值,再令x=1求出二项式展开式中所有项的系数和.

解答 解:(1-2x)n(n∈N*)的展开式中第3项与第8项的二项式系数相等,
∴${C}_{n}^{2}$=${C}_{n}^{7}$,∴n=2+7=9.
∴(1-2x)9的展开式中所有项的系数和为:
(1-2×1)9=-1.
故答案为:-1.

点评 本题考查了二项式定理的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知a,b∈R,i为虚数单位,当a+bi=i(2-i)时,则$\frac{b+ai}{a-bi}$=(  )
A.iB.-iC.1+iD.1-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$经过点$P(2,\sqrt{2})$,离心率$e=\frac{{\sqrt{2}}}{2}$,直线l的方程为 x=4.
(1)求椭圆C的方程;
(2)经过椭圆右焦点e的任一直线(不经过点a=-1)与椭圆交于两点A,B,设直线AB与l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3,问:k1+k2-2k3是否为定值,若是,求出此定值,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设实数x,y满足约束条件$\left\{\begin{array}{l}{x+y≥0}\\{x-y≤0}\\{x+3y≤3}\end{array}\right.$,则$\frac{x+y}{\sqrt{{x}^{2}+{y}^{2}}}$的取值范围是[0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若变量x,y满足约束条件$\left\{\begin{array}{l}{x+2y≥0}\\{x-y≤0}\\{x-2y+2≥0}\end{array}\right.$则z=$\frac{y}{x-3}$的最小值等于(  )
A.-4B.-2C.-$\frac{1}{8}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.2017年1月25日智能共享单车项目摩拜单车正式登陆济南,两种车型采用分段计费的方式,Mobike  Lite型(Lite版)和经典版每30分钟收0.5元(不足30分钟的部分按30分钟计算).有甲、乙、丙三人相互对立的到租车点租车骑行(各租一车一次).设甲、乙、丙不超过30分钟还车的概率分别为$\frac{3}{4}$,$\frac{2}{3}$,$\frac{1}{2}$,三人租车时间都不会超过60分钟,甲、乙均租用Lite版单车,丙租用经典版单车.
(1)求甲、乙两人所付的费用之和等于丙所付的费用的概率;
(2)设甲、乙、丙三人所付费用之和为随机变量ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数y=f(x)的反函数为y=f-1(x),则函数y=f(-x)与y=-f-1(x)的图象(  )
A.关于y轴对称B.关于原点对称
C.关于直线x+y=0对称D.关于直线x-y=0对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设a=1111111(2),b=2001(4),c=242(7),则a,b,c的大小关系是(  )
A.a<b<cB.a<c<bC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知对任意实数x.都有f(-x)=-f(x),g(-x)=g(x),且x>0时,f′(x)>0,g′(-x)>0,则x<0时有(  )
A.f′(x)>0,g′(-x)>0B.f′(x)>0,g′(-x)<0C.f′(x)<0,g′(-x)>0D.f′(x)<0,g′(-x)<0

查看答案和解析>>

同步练习册答案