分析 a+b+c=0,可得a>0,c<0,b=-a-c,根据a>b>c,可得-a-c<a,$\frac{c}{a}$>-2.将b=-a-c代入b>c,得-a-c>c,可得 $\frac{c}{a}$<-$\frac{1}{2}$,即可得出.
解答 解:∵a+b+c=0,
∴a>0,c<0 ①
∴b=-a-c,且a>0,c<0
∵a>b>c
∴-a-c<a,即2a>-c ②
∴$\frac{c}{a}$>-2,
将b=-a-c代入b>c,得-a-c>c,即a<-2c ③解得 $\frac{c}{a}$<-$\frac{1}{2}$,
∴-2<$\frac{c}{a}$<-$\frac{1}{2}$.
∴-2<$\frac{a}{c}$$<-\frac{1}{2}$.
故答案为:$(-2,-\frac{1}{2})$.
点评 本题考查了不等式的性质与解法、方程的解法、转化方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{x^2}{21}-\frac{y^2}{9}=1$ | B. | $\frac{x^2}{9}-\frac{y^2}{21}=1$ | C. | $\frac{x^2}{3}-\frac{y^2}{9}=1$ | D. | $\frac{x^2}{9}-\frac{y^2}{3}=1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{π}^{3}}{81}$+$\frac{1}{2}$ | B. | $\frac{{π}^{3}}{81}$-$\frac{1}{2}$ | C. | $\frac{2π}{3}$-$\frac{1}{2}$ | D. | $\frac{2π}{3}$+$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 周期为2π的奇函数 | B. | 周期为$\frac{π}{2}$的奇函数 | ||
| C. | 周期为π的偶函数 | D. | 周期为2π的偶函数 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com