精英家教网 > 高中数学 > 题目详情
设函数f(x)在R上可导,其导函数为f′(x),且函数f(x)在x=-1处取得极小值,则函数y=x f′(x)的图象可能是(  )
A、
B、
C、
D、
考点:利用导数研究函数的单调性
专题:导数的综合应用
分析:由函数f(x)在x=-1处取得极小值,得x<-1时,f′(x)<0,x>-1时,f′(x)>0,讨论x∈(-∞,-1)时x∈(-1,0)时x∈(0,+∞)时的情况,从而得出答案.
解答: 解:∵函数f(x)在x=-1处取得极小值,
∴x<-1时,f′(x)<0,x>-1时,f′(x)>0,
∴x∈(-∞,-1)时,y=xf′(x)>0,
x∈(-1,0)时,y=xf′(x)<0,
x∈(0,+∞)时,y=xf′(x)>0,
故选:C.
点评:本题考查了函数的单调性,导数的应用,渗透了数形结合思想,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知曲线C1的参数方程为
x=
3
3
t
y=t-
3
(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2-2ρcosθ-2ρsinθ+1=0,设曲线C1,C2相交于两点A,B,则过AB中点且与直线AB垂直的直线的直角标方程为(  )
A、y=-
3
3
x+1+
3
3
B、y=
3
3
x+1+
3
3
C、y=-
3
3
x+1
D、y=
3
3
x+1

查看答案和解析>>

科目:高中数学 来源: 题型:

如果函数f(x)满足:对定义域中的任意三个数a,b,c,都有f(a),f(b),f(c)是一个三角形三边的长,则称f(x)为“三角形函数”.在函数①y=|x|;②y=2x;③y=x+
1
x
(1≤x≤2);④y=4x3-3x2+2(0≤x≤1)中,“三角形函数”的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知离心率为
3
2
的椭圆T:
x2
a2
+
y2
b2
=1(a>0,b>0)过点M(0,1),过点M引两条互相垂直的直线l1,l2,若P为椭圆上任意一点,记点P到两直线的距离分别为d1,d2,则d12+d22的最大值是(  )
A、
16
3
B、5
C、
13
4
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

对于R上可导的任意函数f(x),若满足(x-3)f′(x)≥0,则必有(  )
A、f(0)+f(5)<2f(3)
B、f(0)+f(5)≤2f(3)
C、f(0)+f(5)≥2f(3)
D、f(0)+f(5)>2f(3)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知-1≤x≤1,-1≤y≤1,求M=x
1-y2
+y
1-x2
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-ax(a∈R)
(Ⅰ)若函数f(x)无零点,求实数a的取值范围;
(Ⅱ)若存在两个实数x1,x2且x1≠x2,满足f(x1)=0,f(x2)=0,求证x1x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知体积为8,高为4的三棱柱ABC-A1B1C1,CC1⊥平面A1B1C1,点D、E分别在棱AA1和CC1上,且DE⊥B1C1,DA1=3,EC1=2.
(Ⅰ)求证C1A1⊥C1B1
(Ⅱ)求平面BDE与平面ABC所成锐二面角的最小值;
(Ⅲ)若用此三棱柱作为无盖(上底面ABC)盛水容器,盛水时发现在D、E两处有泄露,试问此容器最多能盛水多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,斜三棱柱ABC-A1B1C1的所有棱长均为a,侧面B1C1CB⊥底面ABC,且AC1⊥BC.
(Ⅰ)求证:AC1⊥A1B;
(Ⅱ)求二面角B1-AB-C的余弦值.

查看答案和解析>>

同步练习册答案