精英家教网 > 高中数学 > 题目详情

【题目】已知动点是圆 上的任意一点,点与点的连线段的垂直平分线和相交于点.

(I)求点的轨迹方程;

(II)过坐标原点的直线交轨迹于点 两点,直线与坐标轴不重合. 是轨迹上的一点,若的面积是4,试问直线 的斜率之积是否为定值,若是,求出此定值,否则,说明理由.

【答案】(1) (2) 直线 的斜率之积是定值

【解析】试题分析:(I)由题意得,利用椭圆的定义,得点的轨迹是以为焦点的椭圆,进而得到椭圆的方程;

(II)设直线的方程为,联立发出来,求解,设所在直线方程为,联立椭圆方程得的坐标,再求得点到直线的距离,根据面积列出方程,得到的方程,即可求解的值.

试题解析:

(I)由题意, ,又∵

∴点的轨迹是以为焦点的椭圆,其中

∴椭圆的方程为.

(II)设直线的方程为,联立,得

所在直线方程为,联立椭圆方程得

到直线的距离.

,解得

∴直线 的斜率之积是定值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,抽奖方法是:从装有2个红球1个白球的甲箱与装有2个红球2个白球的乙箱中,各随机摸出1个球,若摸出的2个球都是红球则中奖,否则不中奖.

)用球的标号列出所有可能的摸出结果;

)有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率,你认为正确吗?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

如图,四边形ABCD为正方形,QA⊥平面ABCDPD∥QAQA=AB=PD

I)证明:PQ⊥平面DCQ

II)求棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的四棱锥中,底面与侧面垂直,且四边形为正方形, ,点为边的中点,点在边上,且,过 三点的截面与平面的交线为,则异面直线所成的角为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设复数z=2m+4-m2i,其中i为虚数单位,当实数m取何值时,复数z对应的点:

1)位于虚轴上;

2)位于一、三象限;

3)位于以原点为圆心,以4为半径的圆上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线恒过定点.

若直线经过点且与直线垂直,求直线的方程;

若直线经过点且坐标原点到直线的距离等于3,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,直线经过抛物线的焦点,且垂直于抛物线的对称轴,与抛物线两交点间的距离为4.

(1)求抛物线的方程;

(2)已知,过的直线与抛物线相交于两点,设直线的斜率分别为,求证:为定值,并求出定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列有关线性回归分析的四个命题:

①线性回归直线必过样本数据的中心点();

②回归直线就是散点图中经过样本数据点最多的那条直线;

③当相关性系数时,两个变量正相关;

④如果两个变量的相关性越强,则相关性系数就越接近于

其中真命题的个数为(  )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近几年出现各种食品问题,食品添加剂引起血脂增高、血压增高、血糖增高等疾病为了解三高疾病是否与性别有关,医院随机对入院的60人进行了问卷调查,得到了如下的列联表:

患三高疾病

不患三高疾病

合计

6

30

合计

36

1请将如图的列联表补充完整;若用分层抽样的方法在患三高疾病的人群中抽人,其中女性抽多少人?

2为了研究三高疾病是否与性别有关,请计算出统计量,并说明你有多大的把握认为三高疾病与性别有关?

下面的临界值表供参考:

015

010

005

0025

0010

0005

0001

2072

2706

3841

5024

6635

7879

10828

参考公式,其中

查看答案和解析>>

同步练习册答案