精英家教网 > 高中数学 > 题目详情
将正方形ABCD沿对角线BD折成一个直二面角,点C到达点C1,则异面直线AB与C1D所成角是(  )
A、90°B、60°
C、45°D、30°
考点:异面直线及其所成的角
专题:空间角
分析:由AB∥CD,得到∠C1DC为异面直线AB与C1D所成的角,由此能求出结果.
解答: 解:如图,AB∥CD,则∠C1DC为异面直线AB与C1D所成的角,
设BD中点为O,连接OC,OC1
则∠C1OC=90°,
令AB=2,则OC=OC1=
2
,C1C=2,
又CD=C1D=2,
∴△C1DC为等边三角形,
∴∠C1DC=60°,
∴异面直线AB与C1D所成角是60°.
故选:B.
点评:本题考查异面直线所成角的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知⊙C:x2+y2=r2(r>0)在点P(x0,y0)处的切线方程为x0x+y0y=r2.请类比此结论,在椭圆中也有类似结论:在椭圆
x2
a2
+
y2
b2
=1(a>b>0)上一点Q(x1,y1)处的切线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,A:B:C=4:1:1,则a:b:c=(  )
A、
3
:1:1
B、2:1:1
C、
2
:1:2
D、3:1:1

查看答案和解析>>

科目:高中数学 来源: 题型:

一个空间几何体的正视图,侧视图,俯视图都为全等的等腰直角三角形(如图所示),如果直角三角形的直角边长为1,那么这个几何体的外接球的体积为(  )
A、3π
B、
3
2
π
C、12π
D、
3+
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a、b、c为正实数,且2a+b=1,则s=2
ab
-5a2-b2-c2+2ac的最大值为(  )
A、
2
-1
2
B、
2
-1
C、
2
+1
D、
2
+1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的右支上一点,F1,F2分别为双曲线的左、右焦点,双曲线的离心率为e,下列命题正确的是(  )
A、双曲线的焦点到渐近线的距离为a
B、若|PF1|=e|PF2|,则e的最大值为
3
C、△PF1F2的内切圆的圆心的横坐标为b
D、若∠F1PF2的外角平分线交x轴与M,则
|MF1|
|PF1|
=e.

查看答案和解析>>

科目:高中数学 来源: 题型:

同时抛掷三枚均匀的硬币,一枚反面朝上,二枚正面朝上的概率等于(  )
A、
1
8
B、
2
3
C、
3
8
D、
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在长方体ABCD-A1B1C1D1中,若棱BB1=BC=1,AB=
3
,则异面直线D1B和AC所成角的余弦值为(  )
A、1
B、
3
3
C、
1
2
D、
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙、丙、丁四位同学各自对A,B两变量的线性相关性作试验,并用回归分析方法分别求得相关系数r与残差平方和m如下表:
r 0.82 0.78 0.69 0.85
m 93 96 101 90
则(  )同学的试验结果体现A,B两变量有更强的线性相关性.
A、甲B、乙C、丙D、丁

查看答案和解析>>

同步练习册答案