精英家教网 > 高中数学 > 题目详情
已知P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的右支上一点,F1,F2分别为双曲线的左、右焦点,双曲线的离心率为e,下列命题正确的是(  )
A、双曲线的焦点到渐近线的距离为a
B、若|PF1|=e|PF2|,则e的最大值为
3
C、△PF1F2的内切圆的圆心的横坐标为b
D、若∠F1PF2的外角平分线交x轴与M,则
|MF1|
|PF1|
=e.
考点:双曲线的简单性质
专题:综合题,圆锥曲线的定义、性质与方程
分析:A:双曲线的焦点(c,0)到渐近线bx+ay=0的距离为
bc
b2+a2
=b;
B:若|PF1|=e|PF2|,则|PF1|-|PF2|=(e-1)|PF2|=2a,2a≥(e-1)(c-a),可得1<e≤
2
+1;
C:根据题意,利用切线长定理,再利用双曲线的定义,把|PF1|-|PF2|=2a,转化为|HF1|-|HF2|=2a,从而求得点H的横坐标;
D:利用三角形外角平分线的性质,结合双曲线的定义,可得结论.
解答: 解:双曲线的焦点(c,0)到渐近线bx+ay=0的距离为
bc
b2+a2
=b,故A不正确;
若|PF1|=e|PF2|,则|PF1|-|PF2|=(e-1)|PF2|=2a,
∴2a≥(e-1)(c-a),∴2≥(e-1)2,∴1<e≤
2
+1,∴e的最大值为
2
+1,故B不正确;
如图所示:F1(-c,0)、F2(c,0),设内切圆与x轴的切点是点H,PF1、PF2分 与内切圆的切点分别为M、N,
∵由双曲线的定义可得|PF1|-|PF2|=2a,由圆的切线长定理知,|PM|=|PN|,故|MF1|-|NF2 |=2a,
即|HF1|-|HF2|=2a,设内切圆的圆心横坐标为x,则点H的横坐标为x,
故(x+c)-(c-x)=2a,∴x=a.故C不正确;
利用三角形外角平分线的性质,结合双曲线的定义,可知结论正确.
故选:D
点评:本题考查双曲线的定义、切线长定理,体现了转化的数学思想以及数形结合的数学思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列命题正确的有
 

①已知A,B是椭圆
x2
3
+
y2
4
=1的左右两个顶点,P是该椭圆上异于A,B的任一点,则KAP•KBP=-
3
4

②已知双曲线x2-
y2
3
=1的左顶点为A1,右焦点为F2,P为双曲线右支上一点,则
PA1
PF2
的最小值为-2.
③若抛物线C:x2=4y的焦点为F,抛物线上一点Q(2,1)和抛物线内一点R(2,m)(m>1),过点Q作抛物线的切线l1,直线l2过点Q且与l1垂直,则l2平分∠RQF;
④已知函数f(x)是定义在R上的奇函数,f(1)=0,xf′(x)-f(x)>0(x>0),则不等式f(x)>0的解集是(-1,0)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
1
5
sin2x图象的一条对称轴是(  )
A、x=-
π
2
B、x=-
π
4
C、x=
π
8
D、x=-
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别为角A,B,C的对边,且(a+b+c)(a-b+c)=3ac,则tanB=(  )
A、2+
3
B、
3
C、1
D、2-
3

查看答案和解析>>

科目:高中数学 来源: 题型:

将正方形ABCD沿对角线BD折成一个直二面角,点C到达点C1,则异面直线AB与C1D所成角是(  )
A、90°B、60°
C、45°D、30°

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式(x+3)(1-x)≥0的解集为(  )
A、{x|x≥3或x≤-1}
B、{x|-1≤x≤3}
C、{x|-3≤x≤1}
D、{x|x≤-3或x≥1}

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,长方体ABCD-A1B1C1D1中,AB=AA1=2BC,则直线BC1与直线A1C所成角的余弦值为(  )
A、-
5
5
B、
5
3
C、
5
5
D、
2
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

在矩形ABCD中,AB=2,BC=1,E为BC的中点,若F为该矩形内(含边界)任意一点,则
AE
AF
的最大值为(  )
A、
7
2
B、4
C、
9
2
D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}满足:an+1=an+
1
n(n+1)
,a20=1,则a1=(  )
A、
1
20
B、
1
21
C、
2
21
D、
1
10

查看答案和解析>>

同步练习册答案