精英家教网 > 高中数学 > 题目详情
已知椭圆的左右焦点分别为,离心率,直线经过左焦点.
(1)求椭圆的方程;
(2)若为椭圆上的点,求的范围.
(1)(2)

试题分析:解:(1)直线的交点的坐标为,             1分
的坐标为.                                     2分
设焦距为2,则.
  , .            5分
则椭圆的方程为.                           6分
(2)当点在椭圆的左右顶点时,;         7分
点不在椭圆的左右顶点时,由定义可知:
.
当且仅当时 “”成立;                   9分
中有
 10分
,        12分
;                            13分
由上述可得的取值范围为.                         14分
点评:考查了椭圆的性质来求解方程,以及结合三角形中的余弦定理来得到角的范围,属于中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知双曲线的左右焦点分别是,设是双曲线右支上一点,上投影的大小恰好为,且它们的夹角为,则双曲线的离心率为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆C以抛物线的焦点为右焦点,且经过点A(2,3).
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若分别为椭圆的左右焦点,求的角平分线所在直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线的焦点与椭圆的右焦点重合.(Ⅰ)求抛物线的方程;
(Ⅱ)动直线恒过点与抛物线交于AB两点,与轴交于C点,请你观察并判断:在线段MAMBMCAB中,哪三条线段的长总能构成等比数列?说明你的结论并给出证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆的左右焦点分别为,由4个点组成一个高为,面积为的等腰梯形.
(1)求椭圆的方程;
(2)过点的直线和椭圆交于两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知过抛物线y2 =2px(p>0)的焦点F的直线x-my+m=0与抛物线交于A,B两点,且△OAB(O为坐标原点)的面积为2,则m6+ m4的值为(   )
A.1B. 2 C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线Cl:y2= 2x的焦点为F1,抛物线C2:y=2x2的焦点为F2,则过F1且与F1F2垂直的直线的一般方程式为
A.2x- y-l=0B.2x+ y-1=0
C.4x-y-2 =0D.4x-3y-2 =0

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,以坐标原点O为极点x轴的正半轴为极轴建立极坐标系, 曲线C1的极坐标方程为:
(1)求曲线C1的普通方程
(2)曲线C2的方程为,设P、Q分别为曲线C1与曲线C2上的任意一点,求|PQ|的最小值

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,点ABC在数轴上,点BC关于点A对称,若点AB对应的实数分别是和-1,则点C所对应的实数是
A.B.C.D.

查看答案和解析>>

同步练习册答案