精英家教网 > 高中数学 > 题目详情
如图,点ABC在数轴上,点BC关于点A对称,若点AB对应的实数分别是和-1,则点C所对应的实数是
A.B.C.D.
D

试题分析:因为BC关于点A对称,所以ABC的中点,根据中点坐标公式可以得C对应的实数为
点评:中的坐标公式的应用十分广泛,要灵活准确应用.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左右焦点分别为,离心率,直线经过左焦点.
(1)求椭圆的方程;
(2)若为椭圆上的点,求的范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

抛物线的准线与轴交于,焦点为,若椭圆为焦点、且离心率为.                   
(1)当时,求椭圆的方程;
(2)若抛物线与直线轴所围成的图形的面积为,求抛物线和直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在极坐标系中,已知圆经过点,圆心为直线与极轴的交点,求圆的极坐标方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线的中心为原点,的焦点,过的直线相交于两点,且的中点为,则的方程为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若直线与双曲线的右支交于不同的两点,那么的取值范围是(  )
A.(B.(
C.(D.(

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线的一条渐近线的斜率为,且右焦点与抛物线的焦点重合,则该双曲线的方程为       

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆,左、右两个焦点分别为,上顶点为正三角形且周长为6.
(1)求椭圆的标准方程及离心率;
(2)为坐标原点,是直线上的一个动点,求的最小值,并求出此时点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆与曲线的离心率互为倒数,则(  )
A.16B.C.D.

查看答案和解析>>

同步练习册答案